()

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTlC

ELECTE
SEP1 8 1992

THESIS

USER INTERFACE OF DFQL:
AN OBJECT-ORIENTED APPROACH

by

Li, Chang-Tsun

May 1992
C. Thomas Wu

Thesis Advisor:

Approved for public release; distribution is unlimited.

v 92-25421
N \\ll‘l\lt‘l‘\ll‘“‘l T

)

C’)’?”‘?}/

92 9 17 uygy

o~

(
\

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

' REPORT DOCUMENTATION PAGE

2. REPORT SECURITY CLASSIFICATION UNCLASSIFIED 10. RESTRICTIVE MARKINGS
28 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
5 DECTASSIFCATIONDOWNGRADING SCHEDULE Approved for public release;

distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

%TWMEEWNWR, OFFICE SYMBOL
omputer Science Dept. (it appcllgable)

Naval Postgraduate School

7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000

7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING

8b. OFFICE SYMBOL
ORGANIZATION

(it applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Bc. ADDRESS (Cily, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TTLE (Include Security Classification)

USER INTERFACE OF DFQL: AN OBJECT_ORIENTED APPROACH

12. PERSONAL AUTHOR(S)
Li, Chang-Tsun

[3a. TYPE OF REPORT
Master’s Thesis

13b. TIME COVERED

FROM 10 06/92

15. PAGE COUNT
181

14. DATE OF REPORT (Year, Morith, Day)
June 1992

16. SUPPLEMENTARY NOTATIOThe views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATICODES

query language,

FIELD GROuP SUB-GROUP

human factors

18. SUBJECT TERMS (Conunue on reverse if necessary and identify by block number}

dataflow programming, object-oriented programming,

well-defined operators which have been given an
construct) in traditional query language (SQL in this
sufficient expressive power and functionality are retai
exist.

19. ABSTRACT (Continue on reverse if necessary and identify by bliock number)
In recent years, many graphical approaches have been proposed to lift the inconvenience of text-based query
language among end-users. The new query language called DFQL (DataFlow Query Language) is a fully
graphical interface to the relational model based on a dataflow paradigm. It only requires users to connect some

equivalent one-to-one correspondent functionality (or
case). All of the power of current query languages and
ned. But some shortcomings of DFQL user interface still

This thesis is to introduce a more ease-to-use and ease-to-learn user interface, so the shortcomings we found
in DFQL user interface can be lifted and the productivity and power of the new version of DFQL can be
increased. We have adopted object-oriented programming approach in our implementation and the benefits of
using object-oriented programming in our development are also discussed.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT
[UNCLASSIFIED/UNLIMITED [T SAME AS RPT.

T} OTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

s, NAME OF RESPONSIBLE INDIVIDUAL
C. Thomas Wu

22b TELEPHONE (Inciude Area Code) |22c. OFFICE SYMBOL
(408) 655-5687 CS/XX

DO FORM 1473, 84 MAR

83 APR edition may be used unli! exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

1

Approved for public release; distribution is unlimited

USER INTERFACE OF DFQL.:
AN OBJECT-ORIENTED APPROACH

by
Li, Chang-Tsun
Captain, Taiwan, R.O.C. Army
Chung Cheng Institute of Technology, Taiwan, R.O.C., 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1992

Author: L C%W‘ zw

Li, ChangTsun

Approved By:

C. ThomuWﬁ. Thesis Advisor

Merd 4 Giothioon

David A. Enckson, Second Reader

Q00 1

Robert B. McGhee, Chairman,
Department of Computer Science

i

ABSTRACT

In recent years, many graphical approaches have been proposed to lift the
inconvenience of text-based query language among end-users. The new query
language called DFQL (DataFlow Query Language) is a fully graphical interface to
the relational model based on a dataflow paradigm. It only requires users to connect
some well-defined operators which have been given an equivalent one-to-one
correspondent functionality (or construct) in traditional query language (SQL in this
case). All of the power of current query languages and sufficient expressive power
and functionality are retained. But some shortcomings of DFQL user interface still
exist.

This thesis is to introduce a more ease-to-use and ease-to-learn user interface,
so the shortcomings we found in DFQL user interface can be lifted and the
productivity and power of the new version of DFQL can be increased. We have
adopted object-oriented programming approach in our implementation and the

benefits of using object-oriented programming in our development are also

discussed.

_Acesdaton por
NTr N) ol

L 44D Pa

GPEOTLD O
DTIC QUALITY [NEPECTAD fa

it 'R¢\ ” T j’

Wwr

TABLE OF CONTENTS

I, INTRODUCTIONcoooitieieieiie ettt ettt e e 1
A. BACKGROUNDcocooiiiicitteicst ettt 1

B. OBJECTIVES ..ottt 4

C. OVERVIEW Lottt 5

II. PREVIOUS DFQL INTERFACEcccccooiiiii et 6
A, CONCEPTS ..ot vt 6

1. DFQL OPeratorscccoceoiiieiiiiniiiciincie et nes 6

a. Primitive DFQL Operatorsoccovvvviiiiiiierie e 8

b. User-Defined Operatorsccccovvieveiiiieeieeieee e 8

2. TeXUODJECIS .oovvieiieiiieeieeeie ettt s sa e s 12

3. DFQL Query Constructioncccccerveeireninvieieniienceseeneens 12

B. SHORTCOMINGS OF THE PREVIOUS DFQL INTERFACE 14

1. Tedious Query Constructionccocoevuviveevccenneenieciene e 15
2. Tedious Delete Operationcccceeevmnieeiieriireeiie e 19
3. No Concurrent Query Constiuctionsccccveeuvvecueiverneeeeenne 19
4. Rigid User Operator Definitionccoceeiiiiiniiniie e 19
5. Reference Information Exit Too Short ..., 20
6. Restricted Way of Getting Help ..o e, 20
HI. NEWDFQLINTERFACE ..ottt 21

iv

A. STARING THE PROGRAM ..., 21
QUERY WINDOW AND ITSITEMS ..., 21

Lo BUONS ittt s 21

2. Drawing aredccccccooeiiiienerireeetse e s 25

3. POP-UP MENUS ..ottt e e 30

C. OPERATOR DEFINITION WINDOW ..o 31
D. MENUITEMS et 33
Lo APPIE e e e 33

20 Bl e 34

3. Edit e 35

4. USEIOPS oottt v et er ettt aas 35

S0 OPHORS. ...ttt ettt 38

6. Info ... ettt ettt e h e e b e b e ne e 39

T, Special o 40

B, WINAOW Lo 40

E. HELPWINDOW L. 42
IV. PROGRAPH AND OBJECT-ORIENTED PROGRAMMING 45
A. LANGUAGE --PROGRAPHccccoooorireecee e, 45
1. Visual Programmingcccoeeevoeiniievineneisiceeeee e 45

2. Object-Oriented Programmingcccoeeeevveverereeieerieeireennnns 47

3. Dataflow Programmingc.ccccoviiveeeiieeiieeee e 48

4. Application Building ToolKitocooooiiiiiiieicce, 51

v

B. WHY OBJECT-ORIENTED PROGRAMMING ..o, 56
C. EVALUATION OF OBJECT-ORIENTED PROGRAMMING 56

1. Benefits of Responsibilities-Driven, Class, and Inheritance ... 57

2. Benefits of Polymorphism and Late Binding 62

V. CONCLUSION ..ottt et 65
A. LESSONLEARNED ... 65

1. UserInterface ASPect cooccviiiiiiiiiii et e 65

2. Object-Oriented Programming ASPectccceovevvenieneeeeennnns 65

B, SUMMARY L.t 66
LIST OF REFERENCESo 68
APPENDIX SOURCE CODEccocioiiiiercecttcce et 70
BIBLIOGRAPHY ...ttt e e 171
INITIAL DISTRIBUTION LIST ..ottt 172

vi

LIST OF FIGURES

Figure I1.1 Operator Constructioncoeeeieiiiniiieiee e 7
Figure I1.2 Construction of DISPLAY and SDISPLAYc.occooceiiiiiciieee. 8
Figure I1.3 DFQL Basic Operatorsc.ccccovvevineneiiiieeine e 9
Figure 1.4 Other DFQL Operatoroocoeeiiiiiienieeiiiieceeceeeeeeevec e 10
Figure I1.5 A Sample QUETYcccoiviviiiiiect e 11
Figure I1.6 An User-Defined Operatorcoecvveeveieneenieviieeereeeiee e 11
Figure 117 Text ObJectcooiviiiiiiiie e, 12
Figure I1.8 A Sample QUETIY ..o 13
Figure IO DB INTERFACEcooco oo, 14
Figure I1.10 Primitives Menu ..o 15
Figure I1.11 Creation of an OPeratorco..coveeeeiieiiiecceeeeceeee e 16
Figure IL12 Edit Menu ..o 17
Figure I1.13 A Selected Operatorco..ooveiiievieiieeeiccccceee e, 17
Figure 11.14 UserOps Menu ... 18
Figure I1.15 Dialog Box for User-Defined Operator Selectionc.covevveeennee. 18
Figure 1.1 Query Windowccoeiiiiiiiiiee e 22
Figure 1112 A Query and its Query Results Window ..., 23
Figure II1.3 Creating an Operator By Typingccccococevvniieiiiieiieeee, 27
Figure I11.4 Help Window ... 29
Figure II1.5 Columns of an Relation at the Qutput of selectccooovivriiriencnnnnn. 30
Figure I11.6 Operator Definition Windowccocoeeiiiiiiiieieec . 32
Figure IIL7 File Menu ..., 34

Figure ITL8 Edit Menu ... 35

Figure II1.9 UserOps Menucoveiiieii et 36
Figure II1.10 Selection Box for User-Defined Operator Deletion 37
Figure II1.11 Selection Box for User-Defined Operator Viewingcccc....... 37
Figure II1.12 User-Defined Operator Windowccoovveniineninniceinccecere, 38
Figure IT1.13 Option... MeNUccceiiiiiiiiiiceenteeere e e 39
Figure II114 Info Menu ...t 40
Figure II1.15 Selection Box for Table ..o, 41
Figure I11.16 Table Information ... 41
Figure II1.17 Special Menuoocooiiiiiiiii et 42
Figure IIL18 Window Menu ..o e 42
Figure II1.19 Cascaded WindOwsccoocooiiiiiiiieiieieeeteee e 43
Figure IV.1 Methods ... e 46
Figure IV.2 Class Hierarchy and Class Componentscccecviincieniieeenine, 49
Figure 1V.3 Class Instructor and Student ..., 50
Figure 1V.4 Terminals, Roots, Arcs and Synchro ... 52
Figure I'V.5 application EQItOrc.ccociiiiii e 53
Figure IV.6menu EditOr ..., 54
Figure IV.7 Window EQIOrcvovieviiieirieesi et 54
Figure IV.8 window item Editors for Button and Pop-Up Menu 55
Figure IV.9 Classes Hierarchycccocooiiiiiiiviiiecieiiecee ettt 58
Figure IV.10 Process of Message Passingc..occoeeveviiiiiieceiieeec e, 61
Figure IV.11 Example of Polymiorphism ..., 62

viii

I. INTRODUCTION

A. BACKGROUND

In the past twenty years, relational database management systems have been
accepted extensively for database implementation. To interact with a database, users
of a database management system such as Ingres develop application programs by
embedding a data manipulation language(e.g., ESQL) in a regular programming
language(e.g., C). But those specialized text-based languages are somewhat
unfriendly to inexperienced end-users (Codd, 1988) (Codd, 1990, chpt.23). In recent
years, many graphical approaches have been introduced to lift the inconvenience
among end-users (Wu, 1991) (Wu, 1986) (Wong, 1982) (Zloof, 1977) (Miyao,
1986).

A new query language called DFQL (DataFlow Query Language) was proposed
in (Wu, 1991). DFQL is a fully graphical interface to the relational model based on
a dataflow paradigm. Instead requiring users to use traditional text-based query
language, DFQL only require users to connect some well-defined operators which
have been given un equivalent one-to-one correspondent functionality (or construct)
in traditional query language (SQL in this case). All of the power of current query
languages and sufficient expressive power and functionality are retained. With an
easy to use facility for extending the language, users are allowed to define their own
user-defined operators by encapsulating existing primitive operators and/or
user-defined operators previously defined by users. The user-defined operators
become part of DFQL but can also be deleted from DFQL if they are thought of to

be no good to exist.

As have been presented previously in other papers (Angelaccio, 1990 and
Sckut, 1991), the following goals are met in DFQL.:

« Employ a fully graphical environment as an user friendly interface
to the database.

« Sufficient expressive power and functionality, including relational
completeness.

o Ease-of-use in learning, remembering, writing and reading the
language's constructs.

. Consistency, predictability, and naturalness (in both syntax and
function).

. Simplicity and conciseness of features.
o Clarity of definition, lack of ambiguity.

e _Ability to modify existing queries to form new queries
incrementally.

. High probability that users will write error-free queries.

. Operator extensibility--allow the user to create new operators in
terms of existing ones, analogous to defining a function in a
programming language.

Partial implementation of DFQL was done in (Clark, 1991). This thesis
improves some shortcomings in Clark’s implementation. For example, as you can
see in (Clark, 1991), a new operator always be created at the upper left comer of the
drawing area. There is no way to create an operator by directly typing at wherever
users like it to be. After being created, users are required to drag the operator to a
new location where it is supposed to be. Several tedious steps of operation are
required to simply delete an existing operator. Without creating an operator in the

drawing area first, no on-line help message about this operator can be get. After

users saved the help message of a new user-defined operator, the content of the help
message can not be changed. So, should the help message of an user-defined
operator need to changed, the only way to do is to delete the operator permanently
and then redefined it and type in the help message carefully without any more
mistake. No more than one DB INTEFACE window (an interface window in which
users construct queries) are allowed at the same time is also a severe limitation of
productivity to DQFL. If more than one DB INTERFACE window is allowed to
exist at the same time then the reference to other existing queries may be more
convenient during the construction of a new query. There are some more
shortcomings which we will discuss in later chapter can be improved. All of these
drawbacks increase users’ overhead to construct a query and limit the productivity
of DFQL.

The main concern of our new development of DFQL as we will discuss in the
later chapters is to introduce a more ease-to-use and ease-to-learn user interface, so
the shortcomings we found in Clark’s DFQL interface need to be lifted in order to
reduce the overhead of the construction of queries. We believe that some features
also need to be incorporated into the new DFQL so that the performance can be
improved and the productivity and power of the new version of DFQL can be
increased. For example, instead of rigidly creating a DFQL object at the upper left
comner of the drawing area of the query window, users should be allowed to create a
new DFQL object simply by clicking the mouse anywhere in the drawing area and
entering the text right on the screen. Multiple DB INTERFACE window (in fact,
as you will see that in our new DFQL, DB INTERFACE window is replaced with

Query Window) and modification of the on-line help messages of existing user-
defined operators are allowed.

Since the interest of this thesis is focused on the user interface, the method of
intermediate code generation and linkage to the existing backend database
management system (DBMS) is not covered. For those who are interested in this

issue can consult (Clark, 1991).

B. OBJECTIVES

. We started from the human factor aspects and utilized the techniques of object-
oriented programming. Since, as stated in last section, the main concern of our new
development of DFQL is to introduce a more ease-to-use and ease-to-learn user
interface the following interface principles (Wu, 1990) are to be met:

* Interface Principle 1: Be able to provide more information when
asked.

* Interface Principle 2: Be able to display multiple information at the
same time.

* Interface Principle 3: Be able to recover from the unintended or
erroneous operation.

* Interface Principle 4: Be able to perform the same operation in more
than one way.

* Interface Principle 5: Be able to prevent severe problem from
happening.

* Interface Principle 6: Be able to prevent modifications that are not
supposed to be made.

We'd also like to discuss some important features and benefits of object-

oriented programming such as reusability, message passing, responsibility driven,

inheritance, polymorphism, etc. we utilized in our implementation and present some

experiences and lessons we learned during the development of our new DFQL.

C. OVERVIEW

Chapter II describes the concepts of the previous DFQL user interface done
by Gard J. Clark, The concepts of our new DFQL is basically the same with those
introduced in this chapter. We also discuss the details of how shortcomings we found
in the previous DFQL interface can be improved.

Chapter III describes our new DFQL user interface and introduces some
important features which we have added to the new version of DFQL. The human
factors analysis of this new interface, and how the interface principles we mentioned
in last section are met is also covered in this chapter.

Chapter IV presents a brief introduction to the programming language we use -
- Prograph and describes why we have adopted the object-oriented approach and
evaluates the object-oriented design of our new DFQL user interface
implementation and the benefits of class, message passing and some other features
of object-oriented programming technique.

Chapter V describes some important lessons we have learned during the
development of the new DFQL interface. A summary of this thesis is also given in

this chapter.

II. PREVIOUS DFQL INTERFACE

A. CONCEPTS

As its name says, DFQL is a DataFlow Query Language. Queries are defined
by the user connecting the desired objects graphically in the drawing area of a query
window. Upon completion of a graphically constructed query, the query can be
translated to the equivalent text-based SQL query by the DFQL interpreter and sent
off to the backend database management (DBMS) for execution. After execution,
the results will then be sent to the Query Results Window displaying on the
computer screen.

Two categories of objects are defined in DFQL interpreter: DFQL operators
and text objects. Data are flowing from one operator to another along the query.
Text objects are used as input data only, so there is no data flowing in to a text object.
Operator execution is controlled by the presence of the input data for that operator.

When all the data required become available the operator may execute or fire.

1. DFQL Operators

There are two categories of operators defined in DFQL interpreter:
primitive operators and user-defined operators. An user-defined operator is one
that has been constructed by the user from primitive operators and possibly other
previous created user-defined operators. So we can say that an user-defined operator
is a compact query with some essential input data unspecified.

All operators in both categories except operators DISPLAY and
SDISPLAY (we will mention them later) have the same appearance. A sample
operator named select is shown in Figure II.1 below. Each operator is made up of

three components: the body with the name of the operator, the input nodes and the

__— input nodes
|

Y

body with select select
as its name

|
|
|

S

output node

Figure I1.1 Operator Construction

output node. They can have multiple input nodes but there is only one output node
for each operator.

The body of the operator is the rounded-rectangle with the input nodes and
output node attached to it. The input nodes and output node are represented by small
circles. The input nodes are where the data from other operator or text object flowing
into or fed into the operator.The output node is where the result of the execution of
this operator flowing out of the operator. The intermediate sult of a operator may
then be passed to other operator(s) by connecting the operator’s output node to other
operator's input node(s). An output node can be connected to multiple input nodes
whereas an input node can only be connected to exactly one output node. The output
from each operator is always a relation.

The appearance of operators DISPLAY and SDISPLAY is shown in Figure

11.2. We are intended to make them different from other operators because as we will

Q.0 Q.00

DISPLAY SDISPLAY

Figure I1.2 Construction of DISPLAY and SDISPLAY

see later that these two operators are not provided to execute query functions but to
allow user to print the contents of relations on the computer screen. They create no

results.

a. Primitive DFQL operators
There are fifteen DFQL primitive operators provided in DFQL
interpreter. Among them, there are six basic operators. These six primitive DFQL
operators and a corresponding translation into SQL are shown in Figure I1.3. The

other primitive operators are shown in Figure 11.4.

b. User-Defined Operators
With user-defined operators, users can construct their own operators for
situations that are unique to their query needs and give those new defined operators
names that reflect the functions they perform. For examrle, instead of creating a
query as shown in Figure I1.5, we can define an operator sel-project and construct

the query as shown in Figure II1.6, where operator sel-project is defined by

DFQL Operator

relation condition

select

IS

relation attribute list

pro'ect]

relation 2
—_—

relation 1 join condition

join

relation 1 relation 2

union

B

relation 1 relation 2

diff

y

grouping attributes

relation count attribute

>

roupcnt

i

SQL

SELECT DISTINCT *
FROM relauon
WHERE condition

SELECT DISTINCT *
FROM relation

SELECT DISTINCT *
FROM relationl rl, relation2 12
WHERE join condition

SELECT DISTINCT *
FROM relationl
UNION

SELECT DISTINCT *

FROM relation2
SELECT DISTINCT *

FROM relationl
MINUS

SELECT DISTINCT *
FROM relation2

SELECT DISTINCT grouping attributes
COUNT(*) count attribute

FROM relation

GROUP BY grouping attributes

Figure I1.3 DFQL Basic Operators

relation 2 grouping attributes
—_—

relation 1 join attribute list

1o

eqjoin

relation aggregate attribute

grouping attribute grouping attributes

relation condition

—ﬂ<n7——

groupflisatisfy
L*J

relation aggregate attribute

grouping attributes

grouping attributes condition

relation aggregate attridbute
relahon number

roupNsatlsfg
relation ! relation 2
intersect
Lo g
sort attribute list
relation title
relation
DISPLAY SDISPLAY]

Figure 11.4 Other DFQL Operator

10

combining primitive DFQL operators select and project. We will discuss how to

define an user-defined operator.

student 9pa>35

select '
name, SID

e

project

Figure I1.5 A Sample Query

gpa >35S

name, SID

L

sel-project
U

student

Figure I1.6 An User-Defined Operator

11

The most significant advantage gained from the utilization of user-
defined operators is that abstraction of complicated queries into a single user-
defined operator is allowed. This make it easier to understand and use operators

correctly. It also conserves space of the drawing area in the query window.

2. Text Objects
A special notation is used to provide textual input to the DFQL operators.
Text entered by the user shows up in the query window as an object with the text

attached to an output node as shown in Figure I1.7. The text object can be interpreted

A Text Object
or

Figure I1.7 Text Object

in two different ways. If the text is the name of a relation, the output at the root can
be thought of as an instance of that specific relation. If the text represents a
condition, a list attributes, or some other textual input to another DFQL operator,

then the text is passed on to that operator as a textual argument.

3. DFQL Query Construction
All DFQL queries exist as a dataflow program in which text objects and
operators are connected by dataflow paths. The data flow paths are represented as

the lines in the DFQL query that connect the input and output nodes of the DFQL

12

objects. Execution of the query can be visualized as flowing from the top of the
diagram to the bottom. When the input arguments to an operator are available, that
operator may execute, or fire, producing its output which will then flow on to the
other connected operators. Since text objects have no inputs, they may fire at any
time. Execution of the query continues until all input has been exhausted. The
general idea behind DFQL query construction have been presented in (Clark, 1991).
Instead of getting into all the details, we give an sample query as shown in Figure

I1.8 below.

pay >= S0000

instructor 1],

N

sel-project

instructor

IDs of Instructors in...

DISPLAY

Figure I1.8 A Sample Query

This query uses the diff operator to return the IID of instructors in CS
department whose pay is lower than 50,000 dollars. In this query the user-defined

operator sel-project from Figure I1.6 is used.

B. SHORTCOMINGS OF THE PREVIOUS DFQL INTERFACE
The previous DFQL interface as shown in Figure I1.9 is made up of a DB
INTERFACE window and a menu with eight menu items. The DB INTERFACE

[& Fite Edit Primitives UserOps Options... Info Special

BOE=======————————= 008 INTERFACE EIE
<
join E
: il RN
select l
projectl RESET
unlon , o
diff '
=

Figure I1.9 DB INTERFACE

14

window is the main interface from which users can construct their queries. The
description of these components can be find in (Clark, 1991). We just present some

shortcomings we found in it and discuss what we can do about them.

1. Tedious Query Construction
The most significant drawback in the Clark’s DFQL interpreter is the way
to create an object in the DB INTERFACE window. Every time an object's button
(either DFQL operator or text object) on the left portion of the DB INTERFACE
window is clicked or an item (operator’s name) from menu item Primitives of the

main menu (Figure I1.10) is selected, DFQL always creates it on the very upper left

« File Etdit Wi 23 UserOps oOptions... Info Special
eqjoin
groupfAlLsatisfy
groupavg
groupmas
groupmin
groupNsatisfy
intersect
DISPLAY
SDISPLAY

Figure 11.10 Primitives Menu

comer of the drawing area in the DB INTERFACE window (Figure IL.11, an
operator named union is created in the DB INTERFACE). In order to put it on the

right place where the object is supposed to be, the user need to click the object and

15

Join l ()
RUN
select I
)
project I RESEY
"
union l
;
% D& D 5

Figure 11.11 Creation of an Operator

drag it. But if the checkable menu item Select in the Edit menu (Figure 11.12) is
checked then all of sudden, when the user click the object in order to drag it, she(he)
will find that instead of dragging it, the object's color is converted,i.e., the object is
selected to be deleted or deselected. So the user need to uncheck, or turn off Select
and then drag the object. Figure I1.13 shows a selected operator

Not being able to create a text object by directly typing on the drawing area

is another drawback. So we believe that allowing the user to locate the exact location

16

" & File [T Primitives UserOps Options... Info_ Special ;

Undo (all) 382

Cut %H

Copy ®C

Paste 41

Clear
................................ 1
v Select

Delete

Figure I1.12 Edit Menu

e,

Figure 11.13 A Selected Operator

for the next object by simply clicking anywhere in the drawing area and then typing
in the text or an existing operator's name directly will ease the user's duty.
To create an user-defined operator in the drawing area, an awkward process

requires the user to select the menu item Select from menu UserOps (Figure 11.14)

17

and selects the specific user-defined operator from a dialog box (Figure
I1.15).Allowing the user-defined operators to be created the same way as primitive
operators are would be a better solution. We will see how this procedure can be eased

in our new implementation.

:.‘ File Edit Primitives Jath Options... Info Speciai

New
Delete
Select
View

Figure 11.14 UserOps Menu

USER DEFINED CPERATORS

selpr.j 4]
usel

user-groupAlLLsatisfy
usrges

zeroin "{ﬁ LCancel J

Figure 11.15 Dialog Box for User-Defined Operator Selection

2. Tedious Delete Operation
To delete an object from the drawing area of the DB INTERFACE
window, the user also need to check, or turn on Select first and then select the menu
item Delete from menu Edit. To make the delete operation easier, we will point out
another way to delete objects without to check Select first. That is to say that Select
is no longer needed in our new implementation of DFQL interpreter and can be

remove.

3. No Concurrent Query Constructions
No more than one DB INTEFACE window are allowed at the same time is
also a severe limitation of productivity to DQFL. If more than one DB
INTERFACE window is allowed to exist at the same time then the reference to
other existing queries may be more convenient during the construction of a new
query and users are also able to construct multiple queries in different windows at

the same time.

4. Rigid User Operator Definition

To create a new user-defined operator, previous DFQL disables the object
creation and delction abilities. So the desired internal structure for the new user-
defined operator must be exist in the drawing area before getting into the operator
definition modz. This means that if the user want to define a new operator during the
process of query construction, he (she) needs to delete some operators unneeded in
the structure of the new operator. While in the operator definition mode, if the user
find that some operators need to be added to or deleted from the internal structure of
the new operator being constructed, he(she) need to give up all the efforts done

before and return to the query construction mode then add or delete some operators.

19

We believe that all the object creation and deletion abilities should be retained in
operator creation mode so the user does not need to go back and forth between query

construction and operator definition modes.

5. Reference Information Exit Too Short
After viewing the internal structure of an user-defined operator, the window
in which the internal structure of the user-defined operator is displayed need to be
closed before the user can proceed to do other stuff. The window and its contents are
not allow to stay available. This means that every time when the user need to view
the internal structure of an user-defined operator, the viewing procedure need to be

repeated. This is also a drawback needed to lifted.

6. Restricted Way of Getting Help

The previous DFQL provides help information describing each operator by
requiring the user to double-click on an operator existing in the drawing area. This
is the only way to get the information of an operator. So it is impossible for an user
to get the information of any operator before it is created in the drawing area. But it
is always the case that users need to consult the help messages of operators from
time to time, especially for user-defined operators. This need is more obvious when
the number of user-defined operators gets larger. So when users are not really sure
what the functionality of an operator they may want to use is, we can not expect
them to tolerate the inconvenience of creating an operator, double clicking it to get
the help message, finding out that it is not what exactly they want and then go
through the same procedures again to try other operators.We will added some more

features of on-line help to our new DFQL interface.

20

III. NEW DFQL INTERFACE

Like the previous DFQL, new DFQL is also implemented on an Apple
Macintosh. Basic operations of this implementation depend heavily on use of the
mouse and pull-down menus. In this section we present an detailed discussion on

how the user interacts with the DFQL interpreter to construct and execute queries.

A. STARTING THE PROGRAM

Ubpon start-up, the user is presented with the screen shown below as Figure I11.1.
We do not use DB INTERFACE as the title of the main window, instead, we use
Query Window followed by an number indicating the sequential order. That is
because we allow multiple Query Windows to exist at the same time in our new
DFQL. So what we see upon start-up is a main window entitled Query Window 1

along with a pull-down menu.

B. QUERY WINDOW AND ITS ITEMS
A Query Window as shown in Figure III.1 can be moved, resized, closed and
roomed by utilizing the basic functions of Apple Macintosh. We assume that readers

are all aware of those functions.

1. Buttons
The Run button executes the query which is currently constructed in the
drawing area. Run will first check that the query is correctly constructed. Then the
query will be sent off to the backend DBMS for processing. Query results returned
from the database will be displayed in a separate Query Result Window (Figure

111.2). We will mention Query Result Window later.

21

Query Window main menu
drawing area l I pop-up menus

Y ll) ﬂ
w File | Edit UserOps. Options... Info Special Window

Query Window 1

EE|

Primativ I
Usropr: &

o

gjo

|
Ho-| New
‘ Open

Save as

Save

olalufa

buttons

Figure I11.1 Query Window

22

enroll testscore >= 95

iselect ENROLL tuples with TE...

DISPLAY |

-] Query Results BIE
e e e ———— —@"'
ENROLL tuples with TESTSCORE >= 95
SID CID GRADE TESTSCORE

SI CS05 A 98
S2 CSio A 95
9 records selected.
-
&
<& [

Figure 111.2 A Query and its Query Results Window

The New button creates a new Query Window N, where N is the number
indicating that this is the Nth Query Window opened since the start-up of the DFQL
interpreter. When a new Query Window is opened, a query filename Untitled #N,
where N is the same number as that in the title of the Query Window. All Query
Windows retains all capabilities as the first one does. By creating new Query
Windows, the user is allow to construct queries in different Query Windows
concurrently. This feature make the DFQL more productive.

The Open button allows the user to retrieve a previously saved query file
from disk. When Open is clicked, a dialog box is presented from which the user can
select the stored query file for retrieval. Before a selected query file can be retrieved
onto a Query Window, DFQL will check if it has been opened in any Query Window
or if there is any query with the same file name exists in any Query Window. If this
situation is true, then DFQL will prompt a message telling the user that in which
Query Window the query file selected has been opened. This feature agrees with
Interface Principle S: Be able to prevent severe problem from happening. If the
selected query file has not been opened, it is immediately retrieved onto the Query
Window and the query (the content of the newly opened file) appears in the drawing
area. The previous filename assigned to the Query Window will be replaced by the
new one.

The Save button stores the current query onto disk with the name that is
currently assigned to the query. The Save as button allows the user to store the
current query with a new name. When Save as is clicked, a file naming dialog box
displayed. The user can enter the new file name for the current query to be saved. If

the entered file name matches an existing file in any Query Window, the user will be

24

prompt that a file with this name is currently opened in a specific Query Window and
the save operation is abandoned and the file naming dialog box appears again asking
the user to enter a new filename. On the other hand, if the entered filename matches
an existing file in the disk, the user will be asked whether or not he(she) really want
to replace the previous stored file. If not, the user can either abandon the saving
attempt or enter a new name. When an appropriate name has been given the query
will be saved to disk.

The Reset button clears the current query from the drawing area and from
the computer's memory. When the user has no desire to save the current query, Reset
can be used to set up a new query. This is also a shortcut to delete all objects in the
drawing area and give the user a blank drawing area to start constructing a new
query. After Reset. Untitled #N is assigned as the file name to the Query Window
N again. This feature which prevent the user from “destroying” an existing query file
by simply clicking the mouse on the Reset button is also based on Interface

Principle 5: Be able to prevent some severe problem from happening.

2. Drawing area

The drawing area is the portion of the Query Window that is bounded by
the horizontal and vertical scroll bars. This area starts out blank and is used to
graphically construct the DFQL query. As the query becomes larger so that portions
of drawing arca are hidden from the user's view, the scroll bars may be used to bring
the hidden portions into view. There are two ways to create an object: First, the user
clicks the mouse anywhere he(she) wants the object to appear in the drawing area.
An “input box”, the gray rectangle, with a flashing cursor at the center appears on

where the mousz is clicked waiting for the user to enter any text from the keyboard.

After the input box shown up, the user can select either an operator from the pop-up
menu Primitive or an user-defined operator from the other pop-up menu UsrOpr
by clicking on the up-side-down triangle. The input box will be replaced with the
selected operator or user-defined operator. The second way is also clicking in the
drawing area to create an input box first and then keep typing in text. Should there
be any typing mistake, the delete key on the keyboard can be used to delete the
mistyping characters. As the Return key is pressed, the text input ended and the
DFQL interpreter checks whether or not the entered text is in the name list of the
primitive operators or user-defined operators. If it is, then the operator whose name
is entered will appears in the drawing area and centered at where the mouse is
clicked. If the entered text is not in the name list of the primitive operators or user-
defined operators, a text object with the text entered will appear and is also centered
at where the mouse is clicked. There is an example shown in Figure II1.3. The
feature allowing operators to be created in more than one way supports the interface
Principle 4: Be able to perform the same operation in more than one ways.

The DFQL interpreter is case sensitive. If the entered text is Select instead
of select (the name of a primitive operator) and we do not have an user-defined
operator named Select, then it is created as a text object, not an operator. If no
characters are entered, after pressing the Return key, the “input box” will
disappears.

In order to construct a DFQL query, the query objects must connected with
the desired data flows. Data flows are the lines connecting output node of any given
object to the input node of another object (or objects). To draw these lines, the user

must click the mouse on either an output or input node. Once the mouse button has

2

click to create an input box

select type in text
ol o}
select an operator created
v

Figure II1.3 Creating an Operator by Typing

been released, a rubber-band line will be drawn from that node to the current
position of the mouse. Clicking on the input node or output node of another object
will connect the dataflow line from the originating node to the newly indicated node
if the connection makes sense. The following attempted connections do not make

sense:

* From input to input
* From output to output
* Between nodes of the same operator

e Making acycle

27

Should any of these nonsense connections be detected, an error message is
presented stating that the attempted connection is not allowed. While the rubber-
band line is “on”, clicking the mouse in an blank portion of the drawing area will
turn off the rubber-band line if the user has decided not to make a connection after
all. Since an input node may have only one input flow, if the user connects a dataflow
line to an input node that already had one, the previous dataflow line is deleted
automatically.

In order to move an object within the drawing area, the user clicks the
mouse on the object and drags it to the desired position while holding down the
mouse button. If the user clicks the object and release the mouse button immediately,
the object will be selected, i.e., its color will be converted. Selecting a DFQL object
existing in the drawin- area has two effects. First, it allows the selected object to
deleted. Second’y, selecting a DQFL operator allows the user to retrieve
intermediate results from the query. When an operator is selected and the Run
button is clicked in the Query Window, The query will be executed up to and
including the selected cperator. The result of this partial query will then be displayed
in the Query Result Window. To delete a selected object, the user can select the menu
item Delete from the menu Edit. The equivalent operation to delete a selected object
is simply pressing the Command and D keys on the keyboard simultaneously. The
user is also allowed to select several objects and then delete them all at one time.
However, an object selected can still be moved around in the drawing area. Simply
clicking the mouse on a selected object will deselects it.

Double-clicking either on an primitive operator or on an user-defined

operator will bring up a help window describing that operator. The Help Window is

28

shown in Figure II1.4. The left portion of the Help Window is a scrolling list of the

e Help =|
4] Inputs . Relation; Condition

project

union Outputs . Relation

dire SoL : SELECT DISTINCT *

groupcnt FROIN Relation

eqjoin VHERE Condition

groupnllsglisfg il Description : Selects tuples met the Condition

groupNsatisfy : from Relation.

groupmas

groupmin

groupavg =)

Figure 111.4 Help Window

names of all operators. The highlighted name is the one we double-clicked on. The
message shown in the right portion of Help Window is the description of the
highlighted operator.

Double-clicking on a text object opens up an editor for that object's text
string. All of the Macintosh 's normal text editing functions such as cutting, copying,
and pasting text from the Macintosh clipboard are supported in this editor. When the
OK button is clicked, the previous text for the object is replaced with the new string.

If the mouse is double-clicked on an output node, the columns of the
relation flowing out of that node are displayed.In this way, the user can determine
what attributes may be used by operators subsequent to that point in the query graph.
This assistance is very important in the construction of large queries in which the

attributes become hard to keep track of. Also, when user-defined operators are used,

29

it is important to be able to easily determine what the names of the attributes are that

the operator produces. There is an example shown in Figure IIL.5.

a>32
student 3P

select

COLUMN NAMES:

SID, SNAME, ADDR, PHONE, GPA

Figure I11.5 Columns of a Relation at the Output of select

3. Pop-up menus
There are two pop-up menus in the Query Window: Primitives and

UsrOpr. Primitives contains the names of all primitive operators while UsrOpr

30

contains the names of all the user-defined operators. When a new user-defined
operator is created, its name will be attached to the end of UsrOpr.

These two pop-up menus provide another way to create an operator. After
the user clicks the mouse on the drawing area to create an input box, instead of
entering text from the keyboard, the user can also click on the reversed triangle of
either pop-menus depending on what kind of operator he(she) want to create and
then selects the specific operator from the pop-up menu list. The input box will be

replaced with the selected operator.

C. OPERATOR DEFINITION WINDOW

When the menu item New in menu UserOps is selected, the Operator
Definition Window as shown in Figure II1.6 is displayed on the computer screen.
The Operator Definition Window is very similar to Query Window. The difference
between these two windows are that they have different set of buttons and there is
an “input bar” in the drawing area of the Operator Definition Window.

The drawing area plays exactly the same role as that in the Query Window does.
The input bar is used to define where the input data te the user-defined operator will
be sent internally. Clicking the mouse on the input bar will create additional input
nodes for the user-defined operator. If too many input nodes are created by mistake,
they can be removed by clicking the mouse on the Delete Input button. Each click
deletes one input nodes from the input bar. Once the desired number of input nodes
are created, they must be connected to the desired operators in the drawing area. All
input nodes of the operators inside the user-defined operator must be connected.
Also, there may be only one unconnected output node in the user-defined operator.

This single node becomes the output node for the entire user-defined operator.

31

input bar

|

EJ=====—===——=— operator Definition Window

A

3
Primative: E

[
»
=
(=]
b
3

Store

Cancel

Delete Input

Clear Al

Bt

Spmf:

Figure I11.7 Operator Definition Window

When the Store button is clicked, DFQL interpreter first check the internal
structure of the user-defined operator to ensure that all necessary connections have
been made and query criteria have also been met. Then the user will be asked a name
for the new defined operator and a description that will be used as help message for
the operator. This feature agrees with Interface Principle 1: Be able to provide

more information when asked. The operator's name is checked for uniqueness

32

among all existing operators. If the uniqueness is ensured, the name of the new user-
defined operator will be added to the end of the scrolling lis of Help Window and
the UsrOpr pop-up menu list so the user can use it immediately. New DFQL allows
users to define user-defined operators successively as many as their want.

The Clear All button clears the drawing area and allows the user to reconstruct
the user-defined operator. The Cancel button cancels all the operations the user has

done since the start of the definition of a new operator.

D. MENU ITEMS

The items listed in the main menu (Figure III.1) usually remain the same
throughout the whole session of the application no matter what window is currently
displayed. Any items that are not applicable at a given time are made unselectable
and are displayed at reduced intensity, commonly known as being “grayed out”. We
also provide equivalent key-combinations for some menu items to speed up the
user's operations. This feature supports Interface Principle 4: Be able to perform

the same operation in more than one ways. The menu items are discussed below.

1. Apple
Apple is a standard Macintosh menu that has no relation to DFQL. It
provides access to Macintosh utilities called “Desk Accessary” and should be
accessible at all times (Apple, 1985, p. I-54). The only DFQL specific item in this
menu is the “About...”. When this item is selected, a brief information about DFQL

interface is displayed.

33

2. File
As shown in Figure 111.7, the New item executes exactly the some function
as the New button in the Query Window. It is very possible that the user may close
the only Query Window unintendedly. Without this New item, the user will not be
able to open any new Query Windows and need to quit DFQL unwillingly. This New
item is provided basing on Interface Principle 4: Be able to perform the same
operation in more than one ways and Interface Principle 3: Be able to recover

from the unintended or erroneous operation.

'« [Edit UserOps Option... Info Special Window

Netw N

Page Setup...
Print... ®P

Figure 111.7 File Menu

The Page Setup... item ic also a standard Macintosh File menu item which
allows the user to change printer parameters such as the size of paper, print quality
and orientation. The Print... item is provided to print out the information of the front
window of the DFQL.

The Quit item closes all opened windows and terminates the DFQL
interpreter execution. Before closing each Query Window, DFQL will check
whether or not the query in the drawing area of this Query Window has been

changed since last Save. If there are new changes since last Save, a dialog box pops

up asking the user if he want to save or not. The user should click either Discard or
Save in order to proceed. This precaution agrees with Interface Principle 5: Be

able to prevent severe problem from happening.

3. Edit
The Edit menu as shown in Figure II1.8 is also a standard Macintosh menu.

It provides the text editing functions of Cut, Copy, Paste, and Clear. They are

available whenever the user is editing text items.

mvusemps Option... Info Special Window
Undo (all) 2

Cut ¥H
Copy #C
Paste ®D
Clear

Delete ¥D

Figure I11.8 Edit Menu

The Delete item deletes the selected object(s). The Undo(all) item recovers
the deleted object(s) and put them back to the drawing area. This feature is based on
Interface Principle 3: Be able to recover from the unintended or erroneous

operation. Undo(all) is only active immediately following the deletion of object(s).

4. UserOps

The UserOps menu as shown in Figure II1.9 is designed for manipulating

user-defined operators. The New menu item is to open the Operator Definition

35

Window so that the user can define new user-defined operators. The Delete menu
item allows the user to delete existing user-defined operators from the DFQL
interpreter. When Delete is selected. the user is presented with a dialog box
containing a scrolling list of user-defined operators, as shown in Figure I111.10. When
the desired operator is selected, by either double-clicking on its entry or single-
clicking on its entry and then pressing the Select button next to the scrolling list.
Once an user-defined operator is deleted, it will disappear from both the scrolling
list of the Help Window and the UstOpr pop-up menu list in Query Window and

Operator Definition Window. The View menu item allows the internal structure of

w File Edit 1L g Option... Info Special Window |

New
Delete
View

Figure II1.9 UserOps Menu

an existing user-defined operator to be displayed. When this item is selected, the user
is provided a selection dialog box as shown in Figure II1.11. After the user chose one
of the existing user-defined operators from the box, an User-Defined Operator
window shows up and displaying the internal structure of that selected user-defined
operator. An example of this display is shown in Figure I11.12. This display is
especially useful if the user-defined operator was provided by someone else. The

user is not allowed to modify the internal structure of user-defined operator. In this

36

DELETE OPERATOR

sel-project
sel-join

>

na [Cancelgj

Figure 111.10 Selection Box for User-Defined Operator Deletion

CHOOSE OPERATOR

sel-project
cel-join

1E

Lserect)
E; (7Cancel J

Figure I11.11 Selection Box for User-Defined Operator Viewing

37

[EJ===——=== User-Defined Operator -- sel-project

Figure I11.12 User-Defined Operator Window

way the integrity of the operator is preserved while still allowing some access to the

internal for the user’s purpose.

5. Options...
This menu, as shown in Figure I11.13, is imported from (Clark, 1991). We
did not introduce any new features to it. All of the items provided in Option... menu
are toggle items. When the item is active, or “turned on”, a check mark is presented
next to the item. For example, in Figure 111.13 the Sound item is turned “on”,
whereas the Display Last and Show SQL are “off’. When the Display Last is

turned on, the output of the last DFQL operator executed will be displayed in the

38

Query Resv' - Window when the query is run. This is useful when incrementally
constructing queries because it causes the display of the results without having to
use a display operator. Show SQL causes the intermediate SQL code that is
generated from the DFQL query graph to be displayed in the Query Results Window
along with the results of the query. This display can be used to troubleshoot any
execution errors that are not directly apparent from the DFQL query graph. Also,
this option allows the DFQL interpreter to be used as a translator in which a DFQL
query is input and a DFQL query is output which could then be run on any SQL
database system. When selected, the Sound option causes certain easily

recognizable sounds to be played at different key points during processing of the

query.

« File Edit UserOps Info Special Window

v Display Last
Show SQL %S
Sound

Figure 111.13 Option... Menu

6. Info
The Table item in the Info menu, as shown in Figure 1I1.14 allows the user

to retrieve information about what attributes exist for tables in any given relation in

39

the database. When Table is selected a selection dialog box (Figure IIL.15) is
displayed from which the user can choose which table he is interested in. This action
will bring up a dialog box displaying the attributes of the selected table as shown in
Figure II1.16. The Help menu item opens the Help Window. We will cover all the

details about Help Window in a specific section later.

« File Edit UserOps Option... Special Window

Tables
Help %H

Figure 111.14 Info Menu

7. Special
This menu (Figure 111.17) is also the original work of (Clark, 1991). The
only item, ORACLE*Shell stars up a separate application to provide the user direct
access to the backend DBMS (in this case ORACLE). Since this separate application

is not our concemn in this presentation, so we do not get into its details.

8. Window
There is only one menu item, Cascade Win (Figure 111.18) in Window
menu. As the user proceeds, there may be several windows opened on the computer
screen at the same time. Some of them inay be overlaid by the others. When

Cascade Win is selected or its equivalent key combination, Command-W is

TABLE NAMES

BRS
COURSE
DEPT
DIALOG
DOG

El

Figure I11.15 Selection Box for Table

TABLE: DEPT

COLUMN NAMES:
DEPTNO, DNAME, LOC

Figure I11.16 Table Information

4]

« File Edit UserOps Option... Info Window
ORACLE “Shell

Figure I11.17 Special Menu

pressed, all the windows will be relocated as the example shown in Figure I11.19 so
the banners of all windows can be seen. This feature allows the user to easily activate

a completely overlaid window.

X S

w File Edit UserOps Option... Info Special
Cascade Win %W

Figure 111.18 Window Menu

E. HELP WINDOW

There are two ways to open the Help Window as we described before: double-
clicking on an operator displaying in the drawing area and selecting menu item Help

from menu Info. Upon opening Help Window, if we want to view the descriptions

42

Query Window ! i
Query Window 2 }
Query Window 3 |

Primative: E

usropr: (7]

Save as

@

Sl T T

Figure I11.19 Cascaded Windows

ot any other specitic operator in the operator list, we can simply click that operator
in the scrolling list. the description of that selected operator will be provided on the
right. This feature agree with Interface Principle 1: Be able to provide more
information when asked, Interface Principle 2: be able to display multiple

information at the same time and Interface Principle 4: Be able to perform the

43

same operation in more than one ways. In fact in order to open the Help Window,
we do not even need to double click on any operator. We can simply select the menu
item Help from menu Info whenever we need to consult the help message. Once the
Help Window is opened, we can view the description of any existing operator.

It is possible for the user to find that the description of user-defined operators
in the Help Window need to be modified after the operator is defined. To modify the
descriptions, the user can double-click the specific operator whose description is to
be modified to open an editor and enter what description appropriate. Upon
completion of the modification, clicking the OK button will save the new
description of that operator. This feature supports Interface Principle 3: Be able to
recover from the unintended or erroneous operation. Since the primitive
operators are basic set of operators, DFQL does not allow their descriptions to be
modified. So double-clicking on the primitive operators cause nothing happened.
Interface Principle 6: Be able to prevent modifications that are not supposed to

be made is honored by this feature.

IV. PROGRAPH AND OBJECT-ORIENTED PROGRAMMING

A. LANGUAGE -- PROGRAPH

Since the previous DFQL interpreter was implemented in Prograph of version
2,02, to make things consistent and to import some of the previous code into our new
implementation, we decide to use Prograph as our programming tool. Another
reason to use Prograph is that, as stated in (TGSS, Tutorial, 1990, chapt. 1),

Prograph integrates four key trends emerging in computer science:

. Visual programming.
e Object-oriented programming.
. Supporting dataflow specification of program execution.

. Providing application building toolkit.

1. Visual Programming

Contrary to text-based programming, visual programming uses graphical
operations to accomplish the programming task. Figure IV. 1 shows the definition of
methods newPerson, setAttributes and introduce for class Person. In method
newPerson, the hexagon-shaped operation creates an instance of a specified class
object (in this case a Person). This newly created Person then flows into the
operation named setAttributes which is a method defined in class Person, After
attribuies being set by the method setAttributes, the Person with his attributes set
flows into the operation named introduce, which is also a method defined in class
Person to have the new person self-introduced. Method setAttributes asks the user

to enter the person’s name and where the person is from, then assigns those two

45

Person/newPerson SRIEIF=ME

27722777 2 27777777777 777773 L‘ﬁ
S)E &2 Person/setAttributes

w 2277777777777 7727777777777
Y Enter name.
V1 Iset Attributes”]
- Y/,
Y lintroduce”)

SASSSS LSS LSS SIS LS SSS IS SIS SIS SISV o

i |
(]
T
N
b)
o
q
7
Q
-
=
=
omip
q
@
(=¥
[y
)
(4+]
(1]
[A]
[+]
|
il

L [%

Figure I1V.1 Methods

personal data from the user as the values of the new person’s attributes, name and
where from?. The new person introduces himself in method introduce,

There are four ways of method reference in Prograph: The form of context-
determined method reference is “‘//method”. This reference indicates that the named
method can be found in the same class as the method containing (calling) this named
method. In method newPerson, Figure IV. 1, method setAttributes is referenced in
this form. The form of explicit-class method reference is “classname/method”.
Method introduce is referenced in this form. The third form, Universal method
reference, is “method”. The containing method looks for the method in the
Universal methods pool. The last form is dara-determined method reference, “/
method”. Prograph looks for the method in the class to which the object arriving at
the first input terminal of the method belong. This powerful method referencing
form supports polymorphism of object-oriented programming and late binding.
Different classes can each hav. a method of the same name with totally different
function. When a method is referenced in this form, Prograph does not know from
which class the specified method can be reference until the class object arrives on
the input terminal of the specified method at runtime. That is why we say that it

supports late-binding.

2. Object-Oriented Programming
Prograph provides a good foundation for object-oriented programing,
system classes. Each class has two components: attributes and methods.
Attributes identify instances of classes. By passing messages (calling methods) to
objects (instance of class), we can make them act accordingly. In prograph, objects

of same categories are group into classes, that is to say that a class is an abstract

47

description of a collection to similar objects. In object-oriented programming,
objects communicate by passing messages. The situation is similar in Prograph but
objects flow into operations to initiate some actions, rather than stationary objects
sending messages back and forth (TGSS, Tutorial, 1990, chapt. 4). Figure IV. 2
shows a class window displaying the classes hierarchy, the attributes and methods
window of class Person. In Figure IV. 1, we have shown one way to assign attribute
values and to pass message asking the person to introduce himself/herself. The line
between classes represent inheritances. For example, classes Student and
Instructor are both descendants of class Person They both inherit all the attributes
and behaviors (methods) of their ancestor Person. But they can have their own
additional attributes and methods (Figure 1V. 3). In attribute window, Figure IV.3,
there is a downward arrow in each inherited attribute icon. Method overriding is also
allowed in Prograph. For example class Instructor has its own method introduce
whose functionalities can be totally different from Person’s.When an instance of
Instructor is “asked” to introduce himself, instead of referencing the method
introduce in class Person, the one in class Instructor is to be referenced. But since
class Student, has no its own method introduce, so when an instance of class
Student is “asked” to introduce herself, the inherited method introduce defined in
its parent class Person is to be referenced. Programmers can also make their created

classes descendants of system classes so a great deal of effort can be saved.

3. Dataflow Programming
In Prograph, each operation can have zero or more input terininals and zero
or more output roots representing by small circles attaching to the top or bottom of

operations (Figure IV.4). Data flow along arcs connecting terminals and roots. When

48

o

g 2.

& B B B

rpplication Menu Menu ltem Yindow Window Item

E0 9 Classes BE
it
gem i

------- classes above this line are provided by system---

E[JE V PersonELE
—

Vv

name

Vv

where from?

5
&l o

newPerson

=

setAttributes

o

introduce

ST

Figure IV.2 Class Hierarchy and Class Components

49

CJE @) Instructor

=

introduce

EO= V instructor =5

where from?

Y

school teaching?

)| S

Ot

EO== V Student =
O =@ Student =

=

take exam

where from? : I

v do homework

school studying? @j

goto class

0 o H
)

Hm o !'%

\%

graduate year

Figure IV.3 Classes Instructor and Student

[I

B

50

all required input data become available at an operation’s terminals, the operation
can not execute or fire. Specific order of execution is not prescribed in Prograph
programs. This situation implies that concurrent execution of several operations is
likely to occur. To enforce the order of execution, synchros are provided as shown
in Figure IV.4. In Figure V.4, there is a direct arc connecting the root of operationl
and one terminal of operation2, so operation 2 must execute after the execution of
operation 1. Same situation between operation 1 and operation 3. But, since there
are no direct arc between operation 2 and operation 3, so they can execute
whenever their required input data are available. Execution order of operation 1 and
operation 2 is not prescribed without the synchro. With the synchro emerging in
Figure V.4, the execution of operation 3 is enforced to wait until the execution of
operation 2 is done. In method setAttributes, Figure IV.1, we used a synchro to
ensure that a person’s name was asked before where he/she is from is.

By combining the dataflow specification of program execution and some
powerful debug facilities, Prograph allows programmers to debug programs by
inspecting the data flowing in the programs from debug mode. With the inspection
of the dataflow, programers can see how programs work and why it does not work

the way as expected if there are some errors in the programs.

4. Application Building Toolkit
The application building toolkit in Prograph supports independent
specification and management of the interface through high-level tools and
facilities. For example, the application, menu, window, and several window item
editors are some powerful and easy to use tools provided in Prograph. application

editor (Figure IV.5) serves as a library of menus and windows. The menu editor

51

arc

|

terminal %operation IZ ‘ constant

Figure IV.4 Terminals, Roots, Arcs and Synchro

(Figure IV.6), window editor (Figure IV.7), and window item editors (Figure IV.8)

are used to specify the “look and feel” of the menus and windows created and

organized using the application editor. So instead of developing the windows,

menus, and their items we need in the DFQL user-interface from scratch, we can just

specify some essential informations in each relevant editor and the application

builder will creates what we need according to the informations we specified. To

refine any portion of them, we just return to the relevant editor and respecify some

relevant informations. No recoding and recompilation needed.

Since there are some new features and facilities added to the 2,02 version,

so our program is implemented in Prograph of version 2.5 (e.g., the pop-up menu

52

Application

F Newb (nstance >j | ¢ Set Defaults ¢

)

Name dbinterface
About Method |/About (ﬂDD'e Eve"“]
® Windows
Classes List of Instances O Menus
QueryResults ¥ |Query Window [(mm To Retive l.isﬂ
QueryWindow Query Results
UsrOpr Help Ileleta Edit
Window User-Oefined Opey [1 J
@ Library
O fctive List
5

Cancel

we used in the Query Window is a new added facility to version 2.5). We do not

intend to get into the details of Prograph. The following references by The Gunakara

Figure I'V.5 application Editor

Sun Systems Limited (TGSS) are recommended for those who are interested in.

* Prograph: Tutorial, second printing, 1990.

* Prograph: Reference, second printing, 1990.

* Prograph: 2.5 Updates, first printing, 1991.

53

Menu |Edit | [Edit |

Undo (all) %2
[Disable Menu

Item |Delete I Cut %H |
%®C

Cop -
Method|/deletq Pus?e ®U

Clear
Key E (Balloon...] - -

Delete *D
[Disable Item [lnsert Before]
D theck

© Styles (Delete)

OKeys
(] Bold (instance |
[1talic ;
[Underline
[Outline
————— ———
Figure 1V.6 menu Editor
3
] QueryWindow
Wwindow Title ‘ﬂuerg Window l
Activate Method |/activateQW
Key Method I |
® Document B Close Box —
QO Dialog X Zoom Box [;
QO Pleain X Grow Boxr
O Plain w/Shadow [} Modal
O Movable Dialog

Figure 1V.7 window Editor .

Button

Button Name |New
A Click Method |QueryWindow/newQryWin

d Active
X Move w/Window
X 6row w/Window [Balloon ...] (Cancel]

Pop-up Menu

Pop-up Name |Primative

Value List ("eqjoin" "groupAflisatisfy"
"groupNsatisfy" "groupavg"
“groupmax"” "groupmin”

Click Method [/createobj

[J Fixed Size < Title? (Balloon ...]
[J Bold

X Active J Italic -
i< Visible [J Underline
X Move w/Window [JOutline

X Grow w/Window [JShadow

Figure IV.8 window item Editors for Button and Pop-Up Menu

55

B. WHY OBJECT-ORIENTED PROGRAMMING

Object-oriented programming is often referred to as a new programming
paradigm (Budd, 1991). In Clark’s DFQL interpreter, object-oriented approach was
attempted. But after a careful examination of Clark’s program, we found that some
major object-oriented programming features, such as responsibility driven,
information hiding, and modularity do not play their role. And the program is also
tightly interconnected by heavily using the explicit-class method reference.These
drawbacks restrict the reusability of his program, so in order to use some methods
in his program we spent some significant effort to modify and re-modularize his
original code. Because of this experience we decide to approach our new
development from object-oriented view so that our code may be more reusable,
portable, and maintainable.

During the examination and modification of Clark’s program, we also found
many attractive features of OOP can be adopted to model our new DFQL interface.
In our view, DFQL interface consists of objects like Query Window, drawing area
(a canvas in which we draw our query) and operators, etc. These objects are
manipulated in response to events, such as the clicking or dragging on the body of a
DFQL object cause the object being selected or dragged. This awareness also

encouraged us to do experiment of object-oriented programming.

C. Evaluation Of Object-Oriented Programming
In this section, we are going to discuss some features of object-oriented
programming we applied to our new development of DFQL interface and some

benefits we have gotten through the whole design process.

56

1. Benefits of Responsibilities-Driven, Class, and Inheritance

To organize or discover classes, we need to take the responsibilities of each
potential class into consideration. Clear assignments of responsibilities increase the
degree of independence of classes thus increase the degree of information hiding
and reusability. When we make an object responsible for a specific action, we can
expect a certain behavior the object is to behave as we passing the request to it. The
higher the degree of behaviors of objects we can expect, the easier we can debug our
program when errors occur and the easier to expend our program by assigning more
appropriate responsibilities to appropriate classes without causing intensive
modification to the program has been existing or importing unexpected interferences
between new code and old code.

Figure IV.9 shows the classes hierarchy of our program. The white-colored
classes are system-provided while the black-colored classes are our created ones.
Each class representing one category of objects encapsulates informations and
functionalities within its attributes and methods. This classes hierarchy is organized
after the following analysis: Class Query Window represents the main window
(also named Query Window) with the responsibilities of detecting and handling the
mouse click events on its item such as button close box, etc., creating new Query
Windows, setting attributes of new created Query Windows, loading query files onto
Query Windows saving query files to disks and closing Query Windows, etc., Class
Query Object represents all query objects. Classes Text Object and Operator
represent text objects and operators respectively. Because they are both query
objects so we make them the descendants of class Query Object to inherit the

attributes and methods we defined in class Query Object. Since operators can also

57

Wpplication Menu Menu Item~Yindow v"“"" tem

a@/eé?@ &

Canvas

QueryResults UsrOpr¥in QueryYindow
@b : s
Query Ub]ect DFQLCanvas @

Prlnter Text Object Operator

@ 60 0

DFQLPrinter Primitive UserO H"P

Figure I'V.9 Classes Hierarchy

be grouped into primitive operators and user-defined operators, so we make classes
Primitive and UserOpr the descendants of class Operator representing primitive
operators and user-defined operators respectively. Class Query Object and its
descendant classes are responsible for maintaining and creating query objects. Class
DFQLCanvas represen:; the drawing area (the drawing area just like a canvas)

within which we “draw” our query. It is responsible for detecting and handling all

58

kind of mouse click events in the drawing area and acts accordingly, drawing
objects, dragging objects, and deleting objects. Class InputBox represents the
“input box” within which users type in the text for the later creation of query objects.
It is responsible for displaying the “inputbox” at where users click the mouse and
reading text that users type in from the keyboard. Classes QueryResults,
UsrOprWin, Printer and its descendant DFQLPrinter, Line, and Help are created
by following the similar analysis.

Assuming the user wants to create an operator by selecting one from either
pop-up menus Primitive or UsrOpr, then when the event of clicking mouse in a
pop-up menu and selecting one operator from the menu is detected by Query
Window, Query Window passes message requesting the creation of an operator
with the name specified to class DFQLCanvas. Upon receiving the request,
DFQLCanvas does some prelimilary actions and then passes the same request
received from Query Window to class Primitive, Primitive then check its
primitive operator list whether there is one with the same name passed in or not. If
there is one, Primitive returns the matched operator back to DFQLCanvas. If there
is none matched, the same message is delivered to class UserOpr to create an user-
defined operator. After the operator is returned, DFQLCanvas draws it in the
drawing area. The ellipses in Figure IV.10 highlight the process of message passing.

We make each class an encapsulation of abstractions having two faces.

From the outside, a user of that abstract encapsulation s+~ - a collection of
methods which define the behavior of the encapsulation actions. On the
internal side, attributes (some people use the term « iables, but for
consistency, we will use atrributes through this thesis) ar to maintain the

59

internal state of the object. In the above example, by using responsibility-driven, we
do not allow classes to interfere or modify attribute values of other classes because
we view changing attribute values as the internal affair and all of them must be
maintained internally by the class instance itself under any circumstances. This
measure makes a program less error-prone and ease the maintenance of a program.
Also, the information hiding rule is observed by the careful responsibility
assignments. For example, DFQLCanvas issues requests of query object creation
to classes Primitive without knowing how they are created.

The clear division of classes helps us design a well structured and
modularized program. The hierarchical organization also helps us to remember the
whole structure of our program and the relationship between classes easier and
better. Since many methods are inherited by the descendant classes from their
ancestor classes, we do not need to replicate codes over and over again. This feature
shortens the development time and supports information hiding also. Figure IV.10
shows an example of inheritance. In Figure IV.10, when either class Primitive or
class UserOpr receives the message requesting the creation of an object from class
DFQLCanvas, since there is no method capable of creating objects defined in both
classes Primitive and UserOpr, the method create defined iu their parent class
Operator will be referenced as if it is defined in their own classes. This benefits is
more significant in the inheritances of our created classes from system provided
classes. For example, by making classes Query Window, QueryResults, and
UsrOprWin - descen: ats of system provided class Window, we can simply use
the methods <€ e, Activate, and Idle defined in class Window without

knowing how whey . . .plemented.

lueryWindow/create 1: EFGEIRELIE

"IDIII
l

SASSSSIISLS ST S SIS YIS ISV 1YY 1S /YT

DFQLCanvas/create 1:2 =RiE]

vindow>>

j i f hame

<«DFQLCanvas»> ~
[Kerase input boxﬁ]
e
J))J)
5, 35
[gset file changed? fecccccccccccc Ceeeeests
2,
astinst
+1
- 7/
tDispLgth
This method is to handle the pop i
selection. An gdbobj will be crea
according to the pop up meny item
ewOpCenter? astinst
(22222 P2 7 22
]z getobject l :3 =@l@:@§€]§ etobject
 add-to-gdbob jlis!
text p°~dispLegth instnum (4SS)

: == & getobject 2:3

&

text

point dispLegthinstnum

| [

Figure IV.10 Process of Message Passuig

6l

2. Benefits Polymorphism and Late Binding
Polymorphism is an feature to send the same message to instances of
different classes. It enhances the readability of software and leads to an easier

extension of code. Figure 1V.11shows an example of Polymorphism. When we

Menu/Quit 1:1

E[J= @22 QueryWindow/Close ERCIDIE

W

«Query¥indow »

I = E

%ave ifﬁle changedﬁ]
\'\'b

\"v
|9
b"
A\
O

LLLLL LI L LT T i)

Afm

Fi 1V.11 Example of Polymorphism

62

choose menu item Quit from menu File, method Quit defined in class Menu is
called. When this method executes, a list of windows opened flows from the right
output terminal of operation windows to method Close which is of the Data-
determined method reference form. As we mentioned in last section, all windows are
viewed as instances of different classes, so when the message Close is sent to them,
they will behave according to the Close method defined in their class or ancestor
class. Because all windows are subclasses of system class Window, so except
Query Window which need to save the query file before closed if the content of the
query file has been changed), all window will close by calling method Close defined
in class Window. The method Close defined in class Query Window as shown in
Figure IV.11 overrides the method Close in the parent class Window by having the
same name and different behavior. It first save the query file which has been changed
if the user desired and then calls the method Close defined in class Window (the
upward arrow means method Close in the supper or parent class is to be called). In
this example, we see the same message Close sending to instances of different
classes causes them to behave differently. We also see that /are binding utilized in
this example. The proper methods Close to be referenced is unknown until the
instances arrive (i.e., until run-tome). This makes the high-level software design
more flexible.

The overriding we saw in last example is just in form of polymorphism.
Another form is overloading which makes the flow of softw -2 e~ >cution easier to
be followed by users. Figure IV.10 shows how the methods ¢ iined in classes

Query Window, DFQLCanvas, and Operator are refere: ‘e overload the

63

method name create so the way an operator is created easier to be understood and

the code is also easier to be read.

V. CONCLUSION

A. LESSON LEARNED
some lessons we learned in our development of this new DFQL interface can be

stress in two aspects: user interface and object-oriented programming.

1. User Interface Aspect
As an application designer, we need to originate all the ideas from the users’
point of view. So human factors need to be taken into consideration. Our experience
is that some established principles like those we listed in Chapter I need to be

followed all the time. We also evaluate some human factors such as

* How long does it take a regular user to learn this new application.
We need to provide users a consistent, well-explained, and easy-to-
use, and easy-to learn tool so they will not get confused or frustrated
by the complexities of the tool.

. What kind of errors may be made by users. Taking this factor into
consideration leads to a design of careless-proof or even fool-proof
application.

. What degree do users maintain their knowledge about the
application dafter a period of time. To increase the degree, the
consistency must be enforced and on-line help messages must
always be available.

2. Object-Oriented Programming Aspect

The following is a list of lessons we learned from the object-oriented

programming aspect:

* Each class is responsible for one task or s tuitively similar
tasks and allow attribute values to be modifi- iintained only in
its own class. This reduces the degree of .nection between

65

classes and makes each class cohesive and modular so later
modification and extension is easier.

* Avoidwriting long methods. Try dividing a task into several subtasks
which can be implemented as clearly defined methods. This also
makes later modification and extension easier and increases the
reusability.

* Properly use polymorphism to make program easy-to-read. This
makes programs more symmetric and easier to be understood.

e Avoid using explicit-class method reference. Explicit-class method
reference makes methods tightly interconnected so when a class
name is changed, we have to change all references in the whole
program. This is error prone and time consuming.

» Properly use abstract superclass to supporr information hiding and
inheritance. We discussed many benefits of information hiding and
inheritance. Proper use of superclass allows the programer to
concentrates on the further development without paying attention to
the low-level details of the referenced methods.

B. SUMMARY

This thesis provides an improved user interface of DFQL originally introduced
by Gard J. Clark and C. Thomas Wu in 1990. In this thesis, we eliminated the
shortcomings of user interface pointed out in their paper and added some new
features to it. Now, this new DFQL user interface allows users to create DFQL
objects simply by clicking the mouse and then entering the text right on the
comjuter screen. Some tedious operations in the previous version of DFQL such as
deleting an object, selecting an user-defined operator have been simplified in our
new implementation. We also make on-line help messages easy to get and allow
informationd: '~ ‘vindow such as Help window, Query Results window and
User-Defined Oper.. r window to co-exist at the same time when users are

constructing their queries in Query Window. This makes more reference

information available at the same time. We also allow users to open Query
Windows as many as they want and define user-defined operators consecutively.
The content of help messages of user-defined operators entered by users can also be
modified easily.

In addition to the new features we added to the DFQL user interface, we also
did an object-oriented programming experiment on this new implementation. The
main techniques of object-oriented programming such as message passing, class,
responsibility-driven, inheritance, and polymorphism are used. The benefits of these

techniques are also evaluated.

67

LIST OF REFERENCES

Angelaccio, M., Catarci, T., and Santucci, G., QBD*: A graphical Query Language with
Recursion, IEEE Transactions on Software Engineering, v. 16, p. 1150-1163, October
1990.

Apple Computer, Inc., Inside Macintosh, v. 1, Addison-Wesley, 1985.
Budd, T., An Introduction to Object-Oriented Programming, Addison-Wesley, 1991.

Clark, G. J.,and Wu, C. T., DFQL: Dataflow Query Language, Submitted for publication,
1991.

Codd, E. F., Fatal Flaws in SQL: Part I, Datamation, v. 34, pp. 45-48, 15 August 1988.
Codd, E. F., Fatal Flaws in SQL: Part II, Datamation, v. 34, pp. 71-74, 1 September 1988.

Codd, E. F., The Relational Model for Daiabase Management: Version 2, Addison-
Wesley, 1990.

Miyao, J., and others, Design of a High Level Query Language for End Users, paper
presented at the 1986 IEEE Workshop on Language for Automation, National University
of Singapore, Kent Ridge, Singapore, 27-29 August 1986.

Sockut, G. H., et. al., GRAQULA: A Graphical Query Language for Entity-Relationship or
Relational Database, IBM Research Report RC16877 (#73833), 14 March 1991.

TGSS (The Gunakara Sun System Limited), PROGRAPH: Tutorial, second printing, 1990.

TGSS (The Gunakara Sun System Limited), PROGRAPH: Reference, second printing,
1990.

TGSS (The Gunakara Sun System Limited), PROGRAPH: 2.5 Updates, first printing,
1991.

Wong, H. K. T., and Kuo 'IDE: Graphical User Interface for Database Exploration,
Proceeding of the Eightt rational Conference on Very Large Database, pp. 22-32,
September 1982.

Wu, C. T., A new grap/ .er interface for accessing a database, Proceedings of
Computer Graphics, pp. 2! 9, Tokyo, 1986.

68

Wu, C. T., Development of a Visual Database Interface: An Object-Oriented Approach,
Application of Object-Oriented Programming, Pinson, L. J. and Wiener R. S., Addison-
Wesley, 1990.

Wu, C. T., GLAD: Graphics LAnguage for Database, Proceeding of the 11th International
Computer Software and Application Conference, Tokyo, Japan, October, 1987, 164-170.

Wu, C. T., Lecture Note for C§3320 Introduction to Database System, Naval Postgraduate
School, 1991.

Zloof, M. M., Query-By-Example: A data Base Language, IBM Systems Journal, v. 16, pp.
324-343, 1977.

69

APPENDIX

Only the source codes we developed are presented in this thesis. The original

codes of system provided classes are not printed.

70

ZZMenu/Quit 1:1

Qe Ll L Ll S TP I 22

@ZMenu/cascade win 1:1

LSS LSS LILTLS TS A LA S 1SS PSS ISP

Cascade all wingows.

[7277477 LSS RS SIS AAS P PISY7)

@ZMenu/cascade win 1:1relacate 1:1

Query WinZcw Wed, May 22, 1392 §.29 PM

@ZMenu/delete 1:1

Query Window Wed. May 20, 1992 609 PM

@ZMenu Item/dim 1:1

Application

Takes as input a LIST
of menuitems to dim
and the associated menu.

SIS LA LPG SIS L LIPS LSS SIS IS 7.

@ZMenu 1tem/highlight 1:)

Takas as input a LIST
ol menuitams ¢ fughignt
and the associaled menu.

S LILSAS LSS PSSP LIPS A P AYY .

Query W."dow Weag. May 27, 1992 € 3C PV

@2QueryResults/showQueryResults 1:2previous win loc 1:2

27 2 L 7 s

Application

(A Calads Ll sl il O AR

@Querytesults/showqueryResults 1:2previous win loc 2:2

O P 72O T 2T D 2D

(50 15)

Query Window Tue, May 19, 1992 1101 PM

e

@ueryResults/showlQueryResults 1:2set query tent 1:1

G]

<<QuenyResul giugry text

QL 2 s s Z e i

Query Window Tue, May 19, 1892 11:01 PM

——

ZQuerylWindow/clear 1:1

%Id rawinputd 12““{5 locate inBarRect ;J

P L U 7 i e 2 s

@QueryWindow/clear 1:1locate inBarRect 1:1

L L a ddddle Ll A e b a ik

insetRec

inBarRec

P A R R T 2l Lol s 2

@ZZ0ueryWindow/Close 1:1

Pl el L e Lkl il i 4D

Query Window Wed, May 20, 1992 523 PM

@QueryWindow/Close 1:1save if file changed 1:1

Zile changed]

it the window to be closed is 0! type *QueryWindow*

and the contents of he canvas In that window has been
changed(i.e. file changed) prompt the user 10 save it belore
closing the window.

O e e s i a B £ s s o da kD

§1. Operator Definition Window

@ZQueryWindow/Close 1:1save if file changed 1:1warning message 1:1

T Ry =e==/]m——
R L 2 DO 2 2, 2 8

§1. has been changed. Save 11?
§2. The content in

U L s dada s da i ke Ll D n 2 e 2D

Query Window Wed, May 20 1392 523 PM

@QueryWindow/create 1:1

L A Ll dddd s il Ll i

This method is to handie the pop up menu
selection. An object will be created
according 10 the pop up menu ilem selected.

YL e e Ll S Ll Ll il

@ZZQueryWindow/activateq 1:1

W

<<QueryWindow>>

draw

IE update mer\uai

It's possible to activate a Query Window with
other types of window being frontmos!. So it's
necessary to update menu.

Pl idla Ll L e Ll Ll 2

QueryWindow/activateQW 1:1update menu 1:1

N L e L S L e S e D

<<QueryWindows»

sl Ll L Ll Ll Ly

Query WinZow Wed, May 20. 1992 523 PM

@20ueryWindow/activateQW 1:1draw 1:1

<<QueryWindow>>
DFQLCanvas

Y s R i R Rl a2

ZaueryWindow/activateQW 1:1update menu 1:1enzable menu 1:1

N lldla e dd il il dddu il

LI LSSSLSLILS ILS LS LA LSS LSNPS Y.

§1.(123456)

Z20ueryWindow/activateQW 1:1update menu 1:1update Edit 1:1

Al g A Ll L T 4

%deacuvae othevsﬂ] [Eacbval celeleﬂ

Bl Ll Ll Dl s e L XD

Query Window Wed, May 20, 1992 524 PM

ZZuerylindow/activateqy 1:1update menu 1:1update File 1:1

R L Ll s il e Ll

P e Ul i da L D

@20ueryWindow/activateQW 1:1update menu 1:1update Edit 1:1activat delete 1:1

LAl UL i Ll U Ul el

Pl Ll Sl i adddadd

ZZQueryWindow/activateQWw 1:1update menu 1:1update Edit 1:1deactivate others 1:1

NGl id st d e T s Ll ad s Lidls 4D

[l il e dd lida ddld s dihid adidD

§1. ("Undo (ali)* “Cut” "Copy® “Ciear® ‘Pasie”)

Query Window Wed, May 20, 1992 524 PM

@2Querylindow/activateQW 1:1draw 1:1draw input box if it exists 1:1

ML s L d il ddds 42D

L L e ik bk £l s 42D

DlueryWindow/activateQW t:1draw 1:1draw input box if it exists 1:1drawGenericOp 1:1

R Lk o e s kdd s i hadd

P L L Ll TP s T s D

ZZauerylWindow/activateQW 1:1draw 1:1draw input bos if it exists 1:1drawGenericOp 1:1getGenericRect 1:1

V. FrameRoundRec]
[¢

V. FillRoundRecy]

e it Ll 4 e P s S22 4D

Query Window Wed, May 20, 1992 524 PM

Z20ueryWindow/set-attributes 1:1

' <<QueryWindow>>> <<bution>>
get window lkocation

§1. Query Window

EventRecord

e Do LT 4 s Ll LR

@Z0ueryWindow/set-attributes 1:1get window location 1:2

22 2, P 2 7o 73
Apptication

A/ A)

&20ueryindow/set-attributes 1:1get window location 2:2

T T IR
“TLS ARSI RS LII LS LS AP S SRS SIAS S

{50 15)

[ZAvArArdrsr s VAS YA 7)

Query Windcw Wad, May 20, '992 524 PM

@QueryWindow/set-attributes 1:1query win # + 1 1:1

L convinsirriniirisissainiiiinrid
Application

Pl Ll i Ll it L dds st

@Zlueryllindow/set-attributes 1:tset popup menu of UsrQpr 1:1

LUl e Ll Ll

s e L L L L U L L LD

@Z0ueryWindow/set-attributes 1:tnew OFQLCanvas 1:1

Create a new DFQLCanvas for each new CueryWindow.

Pl e s Ll Ul L LD

Query Window Wad. May 20, 1992 5 24 PM

Z uerylWlindow/set-attributes 1:1query win # + 1 1:linteger to string 1:3

2Ll Ll i i 2Ll S

P L Ll da il

@Z0ueryWindow/set-attributes 1:1query win # + 1 t:linteger to string 2:3

Nl L s Al R 4 e 2l D

@Z0uerylWindow/set-attributes 1:1query win # + 1 1:linteger to string 3:3

§1. You cant open s0 many windows.

Query Window Wec, May 20, 1992 524 PM

@QueryWindow/Key 1:2

N i L e L Ll i

<Window> Event Record

Usar shouid press °‘return® 1o finish typing.
So keep reading inputs from keyboard until
‘relurn® 18 pressed.

P L L il L L hddadd

@Zauerylindow/Key 2:2

a2 ¢ il L D AL s

When ‘return® is pressed, create an gdbob
accorging 1o the text the user typed n.

P Ll i a e s Ll a L L

uuergwmdowlkeg 1:2return pressed? 1:2

EventRacord

@Querytindow/Key 1:2return pressed? 2:2

R I T

EventRecord
FALSE

Query Windgow Wad, May 20, 1992 524 PM

@ZQueryWindow/reset 1:1

input box

«O’ueryWundow»

Clear drawing canvas in Query Window. empty gdbobjlist.

P L e ada iy e e Lada k)

§1. {0 0 32000 32000}

@20uerylindow/reset 1:1reset canvas 1:1

{Ereset newOpCerterd]

L P e Z, Lm

Query Window Wed, May 2C. 1992 5.24 PM

-an

@Queryllindow/reset 1:1reset file 1:1

L e Ll Ll llds

P s e ik dn el s ks 4

@DQueryllindow/reset 1:1reset canvas I:1reset newOBpCenter 1:1

N L LT s e L a4
%

Locate the newOpCenter at the top of canvas.

e Ll s Ll Ll DET e LD

Z2GueryWindow/saveit 1:2

filgname voli#

First backup the file if poss:bie, and then save
the data from argcist inlo liename on vois.

Query Window Wed. May 29 1992 524 PM

e

—,.

@Z0uerylWindow/saveit 2:2

T

filename vol#

It the backup operation falled, then don't
save the new file because it could write
over our previous data without having that
data backed up.

The error messages for failed backup are
all contained in the mkbackup local method.

e el LTl Ll e o kil

@ZauerylWindow/saveit 1:2mkbackup 1:2

L L o e e 2 2 L

7 1 the file did not previously
ex:s!, Jon't make a backup and
terminate with success.

T
cuc““‘ u

Loagd the oid data from
the origina! lilename it
s goesr't work goto next
case.

it tor any reason (other than above) the
backup coulgnt be made terminate this
local method wih lailure.

SLSLIL LIRSS LIS LS AT S 1S ALY

Query Window Wed. May 20. 1992 5:24 PM

PP

@ZQueryWindow/saveit 1:2mkbackup 2:2

We coulan't lacd the data from the oid
data file. Generale the error message
and then erminate wih faiure.

*File: * §2 (13)

[/ % A SS7.)

§1. “Continuing wilt cause this lilg 1o be replaced"”
§2. * is not an appropnate dbintgriace lile."

D0ueryWindow/saveit 1:2dosave 1:2

Save the dala
inta the input lilename.

DFQGLCanvas

Query Window Waed, May 20, 1992 5:24 PM

@ZQueryWindow/saveit 1:2dosave 2:2

TRCTRITHC oY

R s e s s i dd

il there was an error on saving
the data generate the appropriate

1r0f Mes .
13) 21O message

SISSSSSSSALLLILS SIS LSS PSS

§1. Your data will not be saved!
§2. “Error in attempting to write to *

ZZQueryWindow/saveit 1:2mkbackup 1:2cklength 1:2

LS LSS AL SRS LSS S S PSSR SSSY

The new filename with *.bak® concatenated to
it is of a vaid length {<=31) so continue.

[r1irrivririsvsy YL/ A A7)

@ZQuerytbindow/saveit 1:2mkbackup 1:2cklength 2:2

[2nvavrrnsivaisns ,AZ 7

Filename with ° bak*®
concatenaled 1o 1 was 100
fong so generate error
message and fail this
operation.

Query Window Wed. May 20, 1992 524 PM

@20ueryWindow/saveit 1:2mkbackup 1:2ckiength 2:2

Your file will not be saved!”
is t00 long!"
Sorry, Backup file name: *

@Querytlindow/saveit 1:2mkbackup 1:2cksave 1:2

ZZZT: ARANAHY

e

0

Saving the backup ll@ was successtul.

e s e LD G s S L2 7D

ZtueryWindow/saveit 1:2mkbackup 1:2cksave 2:2

L

(13) There was an error on ltying to save
tha backup tile so genarale an error
message and fa: this ocal metnod.

§1. Your data will not be saved!
§2. Backup file could not be made.

@20ueryllindow/loadit 1:2

tilename volume
2 2P 7

<<QueryWindow> >

(E orocessioas]

If the file has nol been opened
load the data from the

specified fite. Processioad
updates the gabobjist and window
of tepofis On any errors that
were generated by the load.

oA i At WAt A A A]

Query W.nacw ‘Weg. May 22, 1992 524 AV

ZZQueryWindow/loadit 2:2

s

§1. ° has been opened in

Nt Ll L L L ik

filename volume

Pl L il Ll Lkl

@20uerywindow/foadit 1:2o0pened? 1:1

LS SLL LIRS SRS LSS SO S LIRS S

G e e e Za 2 P A2 7

@ZueryWindow/foadit 1:2processioad 1:3

T
iy Al L Ll T 2 L LS

<<QuaryWindow>> tilgname
If no error was ganerated then
load the returned data into the
arechst and then upcale the
window with the new cata

r/
load n1o canvas
P R 2 P 2

Query Window Waed, May 20, 1992 : 24 PM

@aueryWindow/foadit 1:2processioad 2:3

11 ART GE20 BN LERICZmeTIY-)
N R Ll P2 it
Coulant open fie
error.

P Ll ha e i S AR

§1. “Sorry, | could not open the file: *

@ueryWindow/loadit 1:2processioad 3:3

\ T T

O L Rl L fa ks Leta

\ PP el R ida dadea e PP A2

§1. ° is of the wrong type!®

@20ueryWindow/loadit 2:2getwindow 1:1

i anad

pplication

A

Pl s Ll uids da il e L n £ LD

Query Wingow Wed, May 20, 1992 524 PM

-

@ueryllindow/10adit 1:2processioad 1:3load into canvas 1:1

<<QueryWindow»> stilgname gata

DFQLCanvas

P e i Ll e 2l kil Ll e DL 4D

20ueryWindow/loadit 1:2processioad 1:3i0ad into canvas 1:1d

R i e s 4 s L i ld

P L s ka4 R TR

@ZQueryWindow/save as 1:1

Save the data into
the file entered by the user through
the put-file dialog.

B Ll e s L Ll Ll e Ll

Query Window Wed, May 20, 1992 5.24 PM

-

@Queryindow/save as 1:1used in other wimdows? 1:3

N L Ll Lk g K % 4D
- -

filename
<<QueryWingows>

User did not change the
onginal file name.

@2Queryllindow/save as 1:1used in other wimdows? 2:3

filename

operel in cther windcws?

FALSE

@0ueryWindow/save as 1:1used in other wimdows? 3:3

§1. ° has been opened in

Nl UL el G L L L h

window name

Query W.ngow Wea, May 20 '992 524 PM

@2querylWindow/save as 1:1used in other wimdows? 2:30pened in other windows? 1:1

L Ll e i el 2l

Z!ind-1nstanc g .
Nl @

[l i ddd e il e L dald -

@ZQueryWindow/save as 1:1used in other wimdows? 3:3find window 1:1

Ll e L e L L Ll S

plication

e L L L L Ll L2

@Z0ueryWindow/open 1:1

After veritying the user's intentons
(if there have been any changes to

the original query) on what to

do with the current Query, puts up the
get-tile dialog to allow the user 10
pick or enter a 'te to loaa, then

it it was a vaun. file load gdtob;list
trom it.

Qi il e Ll il LD

Query Wirdow Wed, May 20, 1892 525 PM

]

@QueryWindow/readtext 1:1

L Ll e R UL L kddldd

Reads ONE line from a fila.
Tums tralling blanks and
adds a carriage return,
Outputs a string.

Pl Ll T e s Lk i

@0Querylindow/readtext 1:11astchar 1:1

L Ll Ll T e Sl LB

@ZZQueryWindow/apenioop 1:1

To be called repettvely
1o open a tile. Wil loop
until the lile 1s opened.
DANGEROUS to use it the
file requesiad may not
become available. This will
then ioop forever.

G L L i i e L d L

Query W-ndow Wad, May 20, 1992 525 PM

@AQueryWindow/save 1:1

Query Window Wed, May 20, 1992 5.25 PM

-,

@inputBon/readkeyboard 1:1

Ll A dldlid e dikidad

Read keyboard and enlarge the input
box according to the length of the lext.

Pl Ll e s s il LD

@\nputBox/readkeyboard 1:1resize input box 1:1

UL Ll U il il i d B

QL L Tl e Ll L 2

@InputBon/readkeyboard ¥:1resize input box 1:1get string width 1:1

N UL L A Lk kD

P e e & il o da b L T2

@InputBox/readkeyboard 1:1resize input box 1:1set new lacation 1:1

e R L L el 2D

Query Window Tue, May 19, 1992 8.12 PM

@inputBox/readkeyboard 1:1resize input box 1:1set new size 1:1

Naddlid i a sl ki s i 28

Pl il it e Ll L L

@inputBox/init inputbox 1:1

QL L e b £ ddd hndadddaddlddd

Make the input box unselected
and nvisisie.

Pl e e Ll Ll ddddd

Query Window Tue, May 19, 1992 8:12 PM

@ZoF0LCanvas/updategdbtent 1:1

‘\ obj nu&\
. {F g0t owlox(& centerq
O 2 222 2T 20

{

P il UL L P70 2 2R

-

§1. You may edit the string below.

Query Window Wea, May 20, 1392 6 34 PM

@Z0FOLCanvas/updategdbtexnt 1:1new gdntext 1:1

P e 0 e Ll Ll d il

@0FQLCanvas/updategdbtent 1:1get newtexrt & center t:1center-of-mainrect 1:1vert 1:1

N Ll L s s g 2 s 2

QL e i &b s e Lk SRR 2D

Query Window Wed, May 20, 1992 € 34 PM

EZDFQLCanvas/create 1:2

o —

3.)% 4
7
ildrawob

ZZofFQLCanvas/create 2:2

Just hige the input box
it the input box & amply.

L s s ke il b e

gZpFQLCanvas/create 1:2erase input box 1:1

Query Window Wed, May 20, 1992 6.34 PM

EA0FQLCanvas/create 1:2set file changed? 1:1

P e el & haa L s

@ADFaLCanvas/create 1:2getobject 1:3

@ZbFQLCanvas/create 1:2getobject 2:3

text point displegtrinstnum

Qe e L Al L L 2D

@Z0FQLCanvas/create 1:2getobject 3:3

text, point displLegth nstnum

e Ll G e LI e 2P

Query Window Wed. May 20, 1392 6.34 PM

Z20FQLCanvas/create 1:2add-to-gdbob jlist 1:1

AISLS LI A S S SIS SL S S LA LSl PSS SIS S

canvas

LSS PSS PSS LS A KIS LA LIRS S S,

ZDFQLCanvas/create Y:2erase input box 1:1getGenericRect 1:1

L Ll T i e 2 2 2
o -‘-
zpoints-to-recZ

(£ ocarawnputvar]]

Draws ali objects in th canvas.

SIS P LA A P S AP AV A S AP 2.

Query Windcw Wad, May 20, 1992 6.34 PM

L

ZZBFGLCanvas/dodrawall 1:1locdrawinputbar 1:2

LS LLIAS LIS LLILS S LSS SIS ELS Y

LSS RS SLLI RS L 1L PSS IS S A /1LY 7.

eZ0FQLCanvas/dodrawall 1:1locdrawinputbar 2:2

UL e 2l s (s Ll dddid s

SILLLAI IS IS LS 1A LIS SRS PI SIS 11 7.

@ufQLCanvas/getcanuas 1:1

L 2 2. 700
Application

DFQLCanvas

Returns the canvas trom
Quaery Window.

s sy e B i s 2t D

zoFgLCanvas/rubberb 1:1

B Rubberband method. Doses he rubberband
of hne drawing when the user is trying
1o connect obcts with iings. Uses continuous
draw and erasé routings. Until a mouse click.

Query Window Wed. May 20, 1302 6.34 PM

ZZ0FQLCanvas/rubberb 1:1waittilidone 1:1

LS ILIRS KSR LSS I LA SIS LI PSS

- e =

(F gemnewmouse])

L Ll Ll e Lk s Ll

ZufFQLCanvas/rubberb 1:1waittilidone 1:1getnewmause 1:1

SSLLSROLL LIRSS S S PSPIAS LS SIS LA .

Z0rFQLCanvas/eraseline 1:1

Lsnrnsdrnrns v/ A A s

patBic patCopy

GPenMode> > f PenMod e}
Erases a iline from pont 10 point2

by changing the pen mode. Changes
pen dack 10 patCopy when dong.

s 4 s LU s L Kl L

Z20FQLCanvas/drawline 1:1

L O e . 7 7 7d
start end

L N . A
cpoint-to-int Z

Zpoint-to-int i
N

N

Oraws a line from start point
o end pont.

e Ll L e L L R 72

Query Winzow Weo, May 20, 1392 6 34 PM

EZ0FQLCanvas/bedrawline 1:1

N L L el s

B

cLeks

ucm«“"“
Same a3 drawline but includes
he degin and end drawing
primitives.

(33

Ll dddla il L e 2l s d N

@&ofFaLCanvas/drawrtconnects 1:1

«DFG-CINS» gabobihst odject

"33333 . —

7 {3343 lﬂ

Draws all connecting lines from the
root of an input object.

L2 227 C T L 22

E&2oFalCanvas/drawrtconnects 1:1drawrtiine 1:1

Ll ol Ll L a Ll 2R

gdbobjiist (insthum terminale)

Query Window Wed. May 20. 1992 6:356 PM

-

@0fFaQLCanuvas/drawrtconnects 1:1drawrtiine §:t1get terminallist 1:1

e L U e Ld ks d O XD

gabodist
instnum

LIS LIS LS S AP S S IAS SIS S I PY 7 .

@20FQLCanvas/drawinputbar 1:1

R il T Y e 0D

Draws the input bar for the user-delined
operalors screens.

Qe s e i s da D ik ka4

Z2DFQLCanvas/drawinputbar 1:1draw it 1:1

NG L L UL L Ll 2

e L L P Ll 222

Query Window Wad, May 20, 1902 6:35 PM

-

vor e,

20FQLCanvas/drawinnodes 1:1

Draws nodaes on the input bars.
Used from user-defingd operators.

Z0FgQLCanvas/drawinnodes 1:1updaterects 1:1

top spacing
R 7 e 2 22

Erases the input bar from the canvas. Used at
the termination of user delined ops screens.

P e e a2 L Ll s L e

Query Window Waed, May 20, 1992 6.35 PM

20FQLCanvas/doerase 1:1

patBic_DFQLCawvas>> object

7
W
o
»‘7 Erases the object based on the
o
>
o

patCop object numbdar (the POSITION of
= D the object in the listy NOT based
m on the instance number.

hd
srcOr S
o

L s Sl P s e d LT 72

Z0FQLCanvas/doerase 1:1erasestuff 1:1

L 2 s Ll 0 iddda 2d

TIHIL; {, s o]
7

[y

@/drnwlconnoctéc%llduwrtconnocl v

2 Ll s s L2 P77, Lo il 02

ezpfaLCanvas/doerase 1:1erasestuff 1:tinvert if selected 1:1

NG 4 L e L T 2 e 2l s

Z:inveriRoundRecy
P 4 s Ll Ll P £ ks LR

Query Window Wad, May 20, 1992 6:35 PM

@0fFaqiCanvas/drawtconnects 1:1

R 7 7
<<DFQLCarvas>>

Draws all conecting knes from
each terminal of an input object.

P L s Ll L e e 2

EZ0FqLCanvas/drawtconnects 1:1drawtline 1:2

N L s TP L s
S Q

O means no
ling

Pl 4l ST T Tl 44

Z20fFqLCanvas/drawtconnects 1:1drawtline 2:2

o]

This means there was no line
to erase.

2 222 0 R, T2 22027

EZofFQLCanvas/drawobj 1:2

N i L L PP PO AP 2B

Query Window Wed, May 20, 1992 6:35 PM

CZDoFoLCanvas/drawobj 2:2

§ i i'Wioparaloyﬁpm\ﬂ—

@Jzﬁin-dunﬁigfaraw Prmatve & Use'C;'j}
\: 183

“‘
‘ ¢ ¢ ¢
\ 13

Draws gdbopr object trom each
of the component parts.

v Attt EM PR F N R

@ZoraLCanvas/drawobj 1:2draw gdbtext 1:1

terminallis

Query Window Wed, May 2C, 1392 6 35 PM

-~

@0FQLCanvas/drawobj 2:2draw Primative & UserOpr 1:1draw body & root 1:2

V. FrameRoundRecy]

PP s 2 s R L d s LDS

§1. (DISPLAY SDISPLAY)

@Z0FQLCanvas/drawobj 2:2draw Primative & UserOpr 1:1draw body & root 2:2

draw DISPLAY or SDISPLAY

. —

@apraLCarvas/invert 1:1

Inverts the color of ar objec! it
the object 1S selected.

Uses an inset tirst so that the
corners of ihe objec! rema:n 10
3 enhance the appearance.

€, &
P invertRoundRecy

Ul Ll LD T il Ll la LD

Z20FQLCanvas/delete 1:1

Executed in response 10 the
Delele menu item. Goes through
. gdbobjlist and deletes all saiected
M objects. After delations redraws
o! g the canvas and then turns at! the
4 select option.

(2 L L2 P27 7 2O 2y

Query Window Wed, May 20, 1932 635 PM

Z20FGLCanvas/delete 1:1deletem 1:2

L s L i L D i i 28

<<DFQLCanvas»>»

@ZofFQLCanvas/delete 1:1deletem 2:2

Query Window Wed, May 20, 1992 6 35 PM

o

@ZDFQLCanvas/delete 1:1deletem 1:2doterms 1:1

§1. (Primitive UserOpr)

Assumaes that since
we use find-instance
that when we make a
change itis NOT on a
copy bul on the onginal.

Assumaes at least one root
coOnNBCLON since we have a

-9 terminal that says it is connected
to this root.

= =G

SASLSRIS RS SIS SIS S S PSP 7)

gZ0fFaLCanvas/delete 1:1deletem 1:2doterms 1:1rmuvzeros 1:2

o ¢
O T T s

EZ0FaLCanvas/delete 1:1deletem 1:2doterms 1:1rmuzeros 2:2

R p—

@ZbFQLCanvas/delete 1:1deletem 1:2doterms 1:1fixrootlist ¥:1

N L il e s L S

FovoosT)
2]

Query Window Wed, May 20, 1992 6.35 PM

EZ0FQLCanvas/delete 1:1deletem 1:2doterms 1:1fikrootlist 1:1ckroots 1:2

AL SRS IS LRSS ISR 1SN PSSR SISV S

EZbFoLCanvas/delete 1:1deletem 1:2doterms 1:1fixrootlist 1:1ckroots 2:2

O L P T e 2 i LIl L

ZZDFQLCanvas/init line 1:1

Caicuiates the center point
(honz) of input rectangle.

L center point
O P T T 2 2 72 72

Query Window Wed. May 20, 1992 € 35 PM

ZzofaLCanvas/myclick 1:1

window canvas _point "‘m rec

[INN

[[creata W_input box exisi3ppa3g1nandle ciicq)

The contents of tha window 18 changed wnen chcked.
Upon clicking, il there i3 a inputl box exisis create

a gabobj according 10 the taxt in the input box before
handling the click.

SASSES SRS SG LIRSS LSS AL S PSS LS IIIL S

ZZ20FQLCanvas/myclick 1:1set file changed? 1:1

G LR L g b b L il L D

Z0FqQLCanvas/myclick 1:1create if input boxn exist 1:1

s L D2 2 2 a kL e e R e 2D

@0EQLCanuas/handle click 1:5

Ll L e ke VT TP i g 4D
event rec

Query Object

Handles cticks on the BCTY of
gddbob; objects.

G a e e Ll 2l L e Sl

Query Window Wed, May 20, 1992 6.35 PM

ZZ0FQLCanvas/handle click 2:5

event rec

term#)

l dotermcelick

Chck on a terminal {(input node).

222222 222 7222 e 222 222

Z20FQLCanvas/handle click 3:5

N e Y it P
X evant rec

Handles chck «f on a
root {ouiput noge}
VA LS A ARSI AR

@ZZ0F0LCanvas/handle click 4:5

Handte click on the
input bar. (From add user
operator state.)

TS LSSS A LSS S AR N SIS AAAS

@zofQLCanvas/handle click 5:5

canvas Jpoint event rec

Foze couvor]

it drawlingOn is true then just terminale this method Esie,
it a generic operator euists, creale a gdbob; accoraing to
the text in the input box. Then :reate another generic operator

U Ll s L P e s 2

Query Window Wad, May 20, 1992 6.36 PM

ZZoFQLCanvas/handle click 1:Smainclick? 1:1

R R s s ke £ Pl 2 2 2
pant

mainrect
V- 1ind-bound
(lndﬂl gabobj

i click was NOT on the BODY
ol an object, FAIL this case.

20FQLCanvas/handle click 1:5domainclick 1:4

point index
L 2 o s g Lk Ll kD

This case is 10 drag the gabob).
PRl L il i ud s s L LD

&ZZ0FaLCanvas/handie click 1:5domainclick 2:4

N R e Lt s ks bt L2

canvas [oo

8V 18C op num

. Case o seiect an object.
Upaates selecied? and inverts

gdbobjlisf
V color of ot,ecl.
QL Ll il Ll da L R

Query Window Wad. May 20, 1992 6 36 PM

@Z0FgLCanvas/handle click 1:5domainclick 3:4

UL L L il il il

canvaspoint @v rec

SILISL SIS SIS S SR A A SR S/ ST

@oFaLCanvas/handle click 1:5domainclick 4:4

canvas \Po:nt ev rec

Y iupdategdblexy

LW A AN MR IR

@20FQLCanvas/handle click 2:5termclick? 1:1

200 noms])

(instnum s ~th rgrmirai #)

ceeckecs NULLO

FAIL case unless chck
' was on a termmal
0 @ (Input node).

czzz AN AN I A7)

Query Wraow Wea, May 20, 1932 6 36 PM

[Z:! oY Circk on 100! hen drawLineOn = FALSE 4]

Start with drawLinOn off. Turn it on RAemove any path from terminat.
Delete any ling from term. initialize 10 hook up a new Hng.

e e s L el L a ok

ZoFqLCanuvas/handie click 2:5dotermclick 2:2

{instnum term#)

[E aaz 1c roct st

<“¢“¢¢€“€ Q

G.linit_lind
7|
Uplate termirallist and redrawhnes.

P Ll T e L R il 222

ZZ0FQLCanvas/handle click 3:Srootclick? 1:1

Nl s L 2l Lk ids g LS

Quey Wirdow Wed. May 20, 1992 6 36 PM

EZ0FQLCanvas/handie click 3:Sdorootclick 1:3

va a3y, wy TTee, I Wi U
L 2 i U L 4P
. . - Sy o

It double clicked in a root dispiay intormation.

Pl s Ll s dd e L e A s 20D

@J0FQLCanvas/handle click 3:5dorootclick 2:3

canvas index NStnum
|Ewan gntil mouseUpiiB

{E 1 not click on terminal then drawLineOn = FALSE 4]

SIS LIRS PS LS PSS ISP SIS RISV 2.

Query Window Wed, May 20, 1992 636 PM

@Z0FaLCanvas/handle click 3:5dorootclick 3:3

R R L 2 i uidd

ZZ0FQLCanvas/handle click 4:Sinputbarclick 1:1

Query Window Waeqg, May 23, 1992 6.36 PM

E20fqLCanvas/handle click 4:5doinputbarclick 1:1

point eveni rec
L L s R L R e L

L/ .
Y i/drawinnodes)
O T2 T 2P 2

ZZ0FqQLCanvas/handle click 5:5drawlineln? 1:1

canvas

Iinors_A

drawlineQ

TRUE ()

SALLS AP SIS A P PSR 7 YA AP A

ZZ0fFQLCanvas/handle click 5:5locate inputbox 1:1

e il e 2 L2 w22

@20FgLCanvas/handle click 1:Sdomainclick 1:4dodrag 1:1

new raec! old rect

Query Window Wed, May 20, 1992 6 36 M

ZofFQLCanvas/handle click 1:5domainclick 1:4move to new location 1:1

N L R s L ihl L e LS

object

(F tina gabobss witnin region 31
2]

e I R i e e 2 s 2 2R

ZZ0FQLCanvas/handle click 1:5damainclick 2:4invert opr 1:1

;invertRoundRecY

U i e le iR R0 s 2

ZZ0FQLCanvas/handle click 1:Sdomainclick 1:4move to new location I:1set new location 1:1

LIPS LS ER LS LIPS 1 S PI S SA SIS

rect

" d)
Egetctiser]

Fronew caron])

e L Ll 00 e 2

Query Window Wed, May 20, 1992 6 36 PM

@ZoraLCanvas/handle click 1:5domainclick 1:4move to new lacation 1:1set new location 1:1getoffset 1:1

Z IS A LA NN

new rect

Query Window Wed, May 2C, 1392 6 36 PM

@&Z0FQLCanvas/handle click 1:5domainclick 1:4redrawobj 1:1find gdbobjs within region 2:2

e
{ T T

E20fFqLCanvas/handle click 1:5domainclick 1:4redrawobj 1:1redraw 1:1

s L Rl s Ll Rty i ikt d

SLVIILSS LB LLS S LS SIS LSS SRS

Z20FQLCanvas/handle click 2:5termclick? 1:1doonlyops 1:2

& YASLI S A A ASA /7]

|

(instnum 1S Ath termina: #)

[ZArvrs i hrrs A YAIA S, 7

ZorQLCanvas/handle click 2:5termclick? 1:1dooniyops 2:2

ngzzzzzzzzgzzm
pt
(0_0)

Query Window Wec, May 27, 1932 € 36 PM

.

@zZosrqLcanvas/handle click 2:5termclick? 1:1doonlyops 1:2checkterms 1:2

P Ll Tk Ll L 2 ikl Dkl St s L Ll 7D

ZZ0F0lCanvas/handle click 2:5termclick? 1:1doonlyops 1:2checkterms 2:2

@Z0fQLCanvas/handle click 2:5dotermclick {:2wati untit mousetp 1:1

L L s LT 2 2l e 2D

EBU“OZ

’er'E”@

&ZbFqQLCanvas/handle click 2:5dotermclick 1:2update terminalflist 1:1

&2 27 Pm/AL YAS S A AT
q\

<<DFQLCanvas>> .
(Instrum tarme)

Jgdbobijlisl

>

index

tist

gdbob

Query Wirgow Wed. May 20, 1932 € 37 PM

ZZ0FQLCanvas/handle click 2:5dotermclick 1:2set lines 1:1

ezorqiCanvas/handle click 2:5dotermclick 1:2removeline 1:1

instnum :connected !0)

{instnum terms}

%awrlonnoctg

~
~
/7!

(LT i Zidus £l 2 T e 2

Query Wingow Wea. May 20, 1992 6.37 PM

EZoFaLCanvas/handle click 2:Sdotermclick 1:2if not click on root then drawlineOn = FRLSE 1:2

20FaLCanvas/handle click 2:5dotermclick 1:2if not click on root then drawlineOn = FALSE 2:2

L L i e T 728

Z0FaLCanvas/handle click 2:5dotermclick 2:2update terminallist 1:1

cancas gdbodbjlist (nstnum termw

Eansveine Abssos

Update terminallist and remove oid hnes.

U L sl L a e Lkl L 02D

Query Wingow Wed, May 20, 1992 6 37 PM

@&20FQLCanvas/handle click 2:5dotermclick 2:2add to rootlist 1:1

L e &y s Ll S L il

{instnum term#) 10 connect root 1o

ZZ0FQLCanvas/handle click 2:5dotermclick 1:2update terminallist 1:1get object & terminallist 1:1

L L LT Ll e s

//VA/””//}/A//////V”/I/V////”/I/.

ZZuFaLCanvas/handle click 2:5dotermclick 1:2update terminallist 1:1set terminallist 1:1

N L e il e Ll T 2

SASLILL LS PVL IR AL SIS IS IS A Y.

Query Window Wed, May 20. 1992 6:37 PM

@Z20FQLCanvas/handle click 2:Sdotermclick 1:2removeline 1:1update rootlist 1:1

(nstnum terms#)

@ZoFqQLCanvas/handle click 2:5dotermclick 1:2removeline 1:1eraseline 1:t

R D DL 77 274

I/ornuclln

LI A A A A A S AP A A

@z0frQLCanvas/handle click 2:5dotermclick 1:2remouveline Y:1update rootlist }:1rmufmrootlist 1:1

NG T A e e ks el

root hst
{instinum terms)

[SAAAA YA A A AV SRS F S vr)

20FQLCanvas/handle click 2:5dotermclick 1:2if not click on root then drawlineOn = FALSE 1:2click on root? 1:1

UL P a2 X2 s X ild

e L ik 24k s R L 4 s LN

Query Window Wea, May 20, 1992 6.37 PM

2anFaLCanvas/handle click 2:5dotermclick 2:2update terminallist 1:1removeline 1:1

connected to
L R L, R 272 73

(obj# term#)

instnum

P s L s £llds e S &l ddd)

E20fF0LCanvas/handle click 2:5dotermclick 2:2update terminallist 1:iupdate terminaltist 1:1

instnum

e e L Ll Ll PP 2D

@Z0FQLCanvas/handle click 2:5dotermclick 2:2update terminallist 1:1remoueline 1:1rmufmrootlist 1:1

2 2
root hist ¥ (instnum terma)

Query Window Weg, May 20, 1992 6.37 PM

E20FQLCanvas/handle click 2:Sdotermclick 2:2update terminallist 1:1update terminallist 1:1update it 1:1

LALISAI LSS LIS RIS LS TS S ALV

SIS LTRSLLLIRI AV A LS LIRS IS SRS s

ezofraLCanvas/handie click 3:5daroatclick 1:3makeinfo 1:3

Text Object X333

Query W.nagow Wec May 2C, *392 637 PM

@20FQLCanvas/handle click 3:5dorootclick 1:3makeinfo 2:3

zdbopslchockgu_g

€

Shoulant really need a copy here

siNCe wo remaxe the ls! every execulion;
however this keeps adbobylist from EVER
being corrupled (otherwise 1t would be

eadbobjlmnkolluﬂ corrupt afier one execution and belore the
> next).

Alert should say that terminals
and roots are not connectad
corractly. User should check
his query graph.

-]
[A/ AP AP A AT ISR :EIM @

@&Z0FQLCanvas/handle click 3:5dorootclick 1:3dispinfo 1:3

Cuery Window Wad, May 20. 1992 6 37 PM

EZ0FQLCanvas/handle click 3:5dorootclick 1:3dispinfo 1:3

RUMN NAMES:

ZZ0orQLCanvas/handle click 3:5dorootclick 1:3dispinfo 2:3

Nl il 2 L e 2 %2

Object [x]

Text

i R D L 272

gzofqLlCanvas/handle click 3:5dorootclick 1:3dispinfo 3:3

QL R T s 2 s 2 2 22

§1. ® is not in the table list.*
§2. "Error on tabie lookup! *

ZZ0FQLCanvas/handle click 3:5dorootclick 2:3wati until mouselp 1:1

& YRS SIS A ALY A, AAY |

TRUE (%)

P s & b R u L Z A 2B

Query Window Wad. May 20. 1992 6:37 PM

@zbFaLCanvas/handle click 3:5dorootclick 2:3set lines 1:1

L L DT kil dy ddada’dd

center point

P s 2P K DD

ZZ0FqLCanvas/handle click 3:5dorootclick 2:3if not click on terminal then drawtineOn = FALSE 1:2

drawlLineQ

P L R i 2 s

eZDFQLCanvas/handle click 3:5dorootclick 2:3if not click on terminal then drawlineOn = FALSE 2:2

P Ll DL D e e L

Query Window Wed. May 20, 1992 6.37 PM

@Z0FQLCanvas/handle click 3:Sdorootclick 3:3update terminaliist & rootlist 1:1

i point ingex

‘ms(nKﬁbOD;lisl

insthum

tind-instang
instnum

terminallist of start o

7 update

L i L 7, i &ikaks €

@0FQLCanvas/handle click 3:5dorootclick 1:3makeinfo 2:3setselect 1:1

=2) =

Gselected?]

[35]

Cuery W.ndow Wed, May 20, 1992 6.37 PM

LGSR

Z20FQLCanvas/handle click 3:5dorootclick 1:3dispinfo 1:3formatit 1:1

Query Window Wed, May 20. 1992 637 PM

A0FQLCanvas/handle click 3:5dorootclick 2:3if not click on terminal then drawlineOn = FALSE 1:2click on terminal? 1:1

FAIL case unless click
was on a ferminai
{input node).

@0rFaLCanvas/handle click 3:5d0rootclick 2:3it not cick on terminal then drawLineOn = FALSE 1:2¢hck on terminai? 1:1doontyops 1:2

terminailis ¥

-]

-
UipackZ

éinsmum its nth terminal #)
| 21/ A/ Ay Ar /A /7 yA.]

@oraLcanvas/handle click 3:5dorootclick 2.3 not chick on termina ~en drawlL.neOn = FALSE ! 2¢ick on termmal® 1:1doonlyops 2:2

N A A A Ay A

pt

(L))

Query Window Wed, May 20, 1392 6 38 PM

OFOLGlnvnm-\db click 3:5doroolclick 2:3it not ciick on W@rminal then QrawlineOn = FALSE 1:2ciick on terminal? 1:1doontyops 1:2checkierms 1:2

QL R L PPl e s il L il d

+1 FALSE (x]

DFQLCanvulhundlo chek 3:5dorootchick 2.3t not click on terminal tnen grawl.neOn = FALSE 1.2chick on terminal? 1.1doonlyops 1.2chacklerms 2:2

&z

ZZorFQLCanvas/handle click 3:5dorootclick 3:3update terminallist & rootlist 1:lupdate terminallist of start op 1:1

24 YASSI A A APV RI AN Y]
%

Query Window Weda, May 2¢, 1992 6 38 PM

E20FgLCanvas/handle click 3:5dorootclick 3:3update terminallist © rootiist 1:1update rootlist of destination op 1:1

R P R ddd s e L Lk s i L 48

=

SLILIR LIRS LA SR LIS SR LS LIRSS SR Y

DFQLCanvas/handlo click 3:500rootchick 3:3update terminains! & roothist 1:tupcate terminaiist of start op 1:1tindlerm 1:1

position (rect n}

DFQLCanvaslhancle chick 3:5dorootclick 3:3update termmnatiist & rootiist 1:1update terminallist o!f start op t:ifingtarm 1:1checkpt 1:1

Query WinJdow Wed, May 20, 1392 6 38 PM

ZZ0rQLCanvas/handle click 5:5locate inputbox 1:1locate it 1:1

ZZ0FQLCanvas/handle click S5:Slocate inputbox 1:1draw input box 1:1

Pl R L e L i o LR e bk aiddd)

Query Window Wed, May 20, 1992 6:38 PM

@2Query Object/calcrects 1:1

L P R d s Ca kP R s Lkl
X Y name

Based on the length of the
oparator name determings
the coords of the main rect
and root rect (output node).

L i L g T Lk

@Query Object/calcrects 1:1Get mainrect 1:1

N L s il LT ikl S

SIS LIS LA LSS LSS S Sf PSS A SIS 7.

@uery Object/calcrects 1:1Get rootrect 1:1

RO s & Ll s i kil

V. points-to-rect

Given the arity and the length
of the operator's body reclangle
getermings whare to draw the
terminals (Input nodes).

=
7 make

Query Window Tue. May 19, 1992 9:06 PM

Pl L e il Ll e Ll LD

Query Window Tue, May 19. 1992 9:06 PM

s

@3Text Object/setterms 1:1

L e L L e L sk

Included to correspond to

method of same name in Operator
o aliow data determined
reference.

Pl Ll e Lt ke Ll kil

€&ZTexnt Object/create 1:1

L i L P72 U e i 0D

/////A///A/A/////A‘I////A/I///A//////.
Query Window Tue, May 19, 1892 907 PM

ZZoperator/setterms 1:1

R L s L s i e 2 L La kS
g av

Used to move terminals
along with the main (body)
rect when the operator 1s
dragged.

Pl Ll AL L L Ll P 22D

ZZ0perator/setterms 1:1moveterm 1:1

N s e 2 s A L il s
\ [av

B L A s Ll el L e D

@A0perator/set-attributes 1:1

Nl g il Ll e el il Ld

integer(lastinst)

ILPA A EOLLAS AL EAS IS LIRS IL SIS SIS .

Query Window Tue, May 19, 1992 8.34 PM

@Zoperator/create 1:1

Ll s s s e i s Ll 2D

@ZZ0perator/create 1:1get instance 1:2

Ll 4l L L s 4 28

usropr

e i L L L e s S 22

@0perator/create 1:1get instance 2:2

2 o Z T 22D

UserOpr text

NULL

Query Window Tue. May '0. 1992 8 34 PM

userlpr/activeview 1:1

UL R s T s di e dudidd

<<WINgow>>

-,

@Buserpr/activeview 1:1update menu 1:1

L 2 Sl e ikl Ll

@uUserOpr/activeview 1:tupdate menu 1:1update File 1:1

[A0 177/ A A S A ALV A A AT R S I A A7)

§1. (*Print...* *Page Setup...")

@userOpr/viewop 1:1

Uses salect diaiog to display

available user operalors.

Ap Ilcnion | select usropr I
Takes 'he one tha! was selecled

o ang dispiays it In the View
NULL a User QOperator -- window.
Concaterates the name of the
user operalor being displayed
10 h@ wingow name $0 it gats
dispiayed 0 the LLQ Dar.

ndow

e Ll A ddda i il a bk ad s A AR

Cuery Window Wed. May 20, 1992 557 PM

@&user0pr/viewop 1:1select usropr 1:1

L e e ke dd DL 2

P L s Ll Ll 4 22

§1. CHOOSE OPERATOR

@2User0pr/viewop 1:1update menu 1:1

N e L L &L i i XD

LA SIS T P 5 Y o R A AR Ay YA

@userlpr/viewop 1:1get UsrDpr window 1:1

R s Ll ¢l L s i dd

Qe L la i e fdd i Ll 4 el

§1. User-Defined Operator

Query W.ndow Wed, May 20, 1992 5 57 PM

-~

e

@ZuserOpr/viewop 1:1update menu 1:1update File 1:1

§1. ("Print...° *Page Setup...")

L L L L Ll s i

P e L s 4l Ll LD

@DUserOpr/viewop 1:1get UsrOpr window 1:1previous win loc 1:2

2, 22 07
Application

@userdpr/viewop 1:1get UsrOpr window 1:1previous win loc 2:2

N L Ll Ll L LT R i

{50 15)

Quser0pr/viewop 1:1get UsrOpr window 1:1get window 1:2

s L L L i s P2 2P
Ztind-window- 4

N

///”l/ﬂ””/l”k//ﬂ//”ﬂ””ﬂ/.

@JUserOpr/viewop 1:1get Usrfpr window 1:1get window 2:2

e el R T 2 2 P 2P

Query Window Wed, May 20, 1992 5:57 PM

&user0pr/delete input 1:1

@2userfpr/cancel 1:1

UL L L Ll a7 s ik d

SLLLSRLS LSS LS AL LSS LSS IS S 7

@2UserCpr/delop 1:1

mpda!e JsrOpr pop-ug men_uj}

[E update operators hst in Hep wnndowi]

P T LR s L 2

§1. DELETE OPERATOR

Query Window Wed, May 20, 1992 5.57 PM

@userlpr/delop 1:tupdate usropriist 1:1

L Lkl s L 2 o 2D

P iy L s Ll Ll e

@Usertpr/delop t:1update operators list in Help window 1:1

LLL LSS SIS S PSS AP LSS PSS PSP

name

{E spoate operators nst]]

£ update HelpList
LSS AL SIS LIRS S Pt S LSS A LSS 2.

@userlpr/delop 1:1update UsrOpr pop-up menu 1:1

L Ll L i it

P s e e L i sa Za ks s 22

@uUser0pr/delop 1:1update operators list in Help window 1:1update Helplist 1:1

Query Window Wed, May 20, 1392 557 PM

@uUserlpr/delop 1:1update operators list in Help window 1:1update operators list 1:1

W

Application name

Qo e e e L L il D

ZZuserCpr/delop 1:1update UsrOpr pop-up menu 1:1find all Query Window 1:1

O T, /

Application

G-3.
tind QueryWindows

[£Ar Al A/ AV PSS HIA L2

ZZUser0pr/delop V:tupdate UsrOpr pop-up menu 1:1set UsrOpr 1:1

QL L el Ll e D 7 22 7D

Query Window Wed, May 20. 1992 5.57 PM

QuserOpr/delop 1:1update UseOpr pop-up menu 1:1find all Query Window 1:1find QueryWindows 1:2

R Ll e L P72 ki 2

ZZuser0pr/newusrop 1:1

2 2 2 2 O 7

<<Manu>>
[Eget window & canvasﬂ]

Sets up Query Window screen
fo accep! definition of a new
user Jehned operator.
Setupitems turns off all
buttons and meny setections
NOT associated with user op
gelinit.on.

o o
iocate inBarRec!

3

-
-
~
-
“
-
Ad
-
-
g

hod 0
‘E:’sei some a:'.'wutesa

Idrawinputba

(“(“‘

3”3,:)323
l 7 update menu

2//1 /5

Lalsna dadadd

@user0pr/newusrop 1:1get window & canvas 1:1

Ll e L L L X

Query Window Waed, May 2C. 1992 557 PM

BAuserpr/newusrop 1:1set some attrivutes 1:1

()

inBarlLlis

P P Rk L e s L2

userfpr/newusrop 1:1setupitems 1:1

<<QueryWindow>>

(E.deactivato_itoms 3

TRUE

P st TR L Z DL L 2 N

@ZUser0pr/newusrop 1:1update menu 1:1

UL L Tl P L L 2 P

QL P 0 L P e e 22

Query Window Wed, May 20, 1992 5.57 PM

-

ZAuserOpr/newusrop 1:1locate inBarRect 1:1

L L2 s el s il

L L L 4 i s i d s XD

@usertpr/newusrop l:1get window & canvas 1:1set attributes 1:1

7 3 ~ator 4
[&get win2ow .0Zalor 4

n

P L L L2 e a7 {2 2

§1. Operator Definition Window

EAVserOpr/newusrop 1:1get window & canvas 1:1set atiributes 1:1get window location 1:2

LA/ R A/ I AN 2L AR Hf 1S A 777
Application

@user0pr/newusrop 1:1get window & canvas 1:1set attributes 1:1get window location 2:2

ML e ks L X e 24P
{50 15}

Query Window Wed. May 20, 1992 §:57 PM

AUser0Opr/newusrop 1:1setupitems 1:1deactivate items 1:1

R e R i L h kL P2

>
(2]
. .\..

=

P AL il a d a ddd L 2

§1. (Run New Open *Save as° Save Reset)

@QUserdpr/newusrop 1:1setupitems 1:1activate items 1:1

WZW

<<QueryWindow>>

Pl L TP A e s Cl R 2D

Store Cancel "Delete Input® "Ciear All")

@user0pr/storeop 1:2

TN

<<QueryW.rdows>>

First checks the user op for correct
connections. Then gets the name

for the operator (getopname) and the
help message for i (getnelptex!) from

Z‘rdbopslchockgn;@
the user. Then adas it in correct

v s
' ; Jeicgramae .. l "
l deln more?{! aiphabetical otder (determined by

4%} gelcpname -- when It also checks for
getheiplex! 2377
plex: 2 attempted use of alrgady used names)

[Egrealo new suvop'ﬂ 1o the persistent list of all user defined
operators.

(E uodate LsrOpr pop-up men. 4]

A A A NI H A7)

Query Window Wed, May 20, 1992 5:58 PM

&ZQuser0pr/storeop 2:2

Alert should say thal terminais
and roots are not connected
corractly. User should check
his query graph.

@UserOpr/storeop 1:2getopname 1:2

NG 22 ld s el i s e lihald

{Eupgate operators iist in netp winoow 11

<

§1. Enter the desired name for this operator:

@Vser0pr/storeop 1:2getopname 2:2

Nl u L ks LR R KB

Query Window Wed, May 20, 1992 558 PM

EQuser0pr/storecp 1:2create new suropr 1:1

G L R R e & s L8

&Useropr) <<QueryWindow OFQLCanvas

The copy s required

becaus@ o! how prograph

slor@s lists elc. The

terminallist in tha persistent
will actually get messed up
when we do //cance! otherw:se.

Y Ll R LAe e L s T2

&3Userlpr/storeop 1:2gethelptent 1:1

§1. Please enter halp information for your new operator.
{Use option-return 1o start new lines.)

Query W.ndow Wed, May 20, 1992 5.58 PM

@userOpr/storeop 1:2update UsrOpr pop-up menu 1:1

ML Ll e L Ll L il

@Zuserlpr/storeop 1:2defin more? 1:2

$1.

saved. Define any more?

Operator name <<QueryWindow>>

Operator

ZZZ LAY ARSI AN 2]

@ZZuserlpr/storeop 1:2defin more? 2:2

<<QueryWinoow>>
Operator name

P T R ik s d ka2 e oD

@useropr/storeop 1:2getopname 1:2lookforname 1:1

name in
LR Ll ks & R Bl 2 2

PO L
3/

J e L L U L it S la Ll ik 42

Query Window Waed, May 20, 1992 558 PM

.

@ZuserOpr/storeop 1:2getopname 1:2update aperatars list in help window 1:)

s L e Ll i S O 728

plication

SILLLLILL LS PSS LS A TP LIS,

@2User0pr/storecp 1:2getopname 1:2lookforname 1:lsamename? 1:2

Qe Ll O e Ll Ll T 2

@useropr/storeop 1:2getopname t:2lookfarname t:1samename? 2:2

§1. Please enter a different name.
§2. ° s aiready in use!

@ZUserlpr/storeop 1:2create new suropr t:1getrootinst 1:1

R e 2 T
Query Window Waea, May 20, 1992 5 58 PM

@userlpr/storeop 1:2create new suropr 1:1getcons 1:1

Ll e L e 44l a Lkl S

P Ll s i s Ll s 4

@UserOpr/storeop 1:2update UsrOpr pop-up menu 1:1find all Query Window 1:1

R L R 2d st s L ks d

Application

tind QueryWindows

Sl

@user0pr/storeop 1:2update UsrOpr pop-up menu 1:1set UsrOpr 1:1

G L el Ll Ll s

O At Kdad e &sds oa o il sl

@userOpr/storeop 1:2update UsrOpr pop-up menu 1:1find all Query Window 1:1find Querylindows 1:2

N Ll e d il dla Ll Ll s 2ddD

i L e it L o £l a L LD

Query Window Wed. May 20, 1992 5 58 PM

@DuserOpr/storeop t:2update UsrOpr pop-up menu 1:1find all Query Window 1:1find QuerylWindows 2:2

e Ll et e el ks 2 2

ALY RS SIS LSS LA SILS Y.

@2VUser0pr/oprdraw 1:1

Basically the same as gdbopr draw except it must
account for the input bar and any connections fo it.

U s L T Sl s el

@ZuUser0pr/oprdraw 1:tdraw input bar 1:1

Pl e i & e Ll T 02 2 2

Euserlpr/oprdraw 1:1draw input bar 1:1draw it 1:1

A ARSI |

SIVLL AL L LA LS AR LS A RSP PSS 7.

Query W.nadow Wed, May 20, 1992 5.58 PM

-M

@2telp/show help 1:1

AL e o e L Ll ikl d

message name

(ESpenepwinaow]

e R P R 2 PR i e diidd

@2Help/show help 1:1GetMessage 1:1

LSS ASLI SIS SIS IS PSS S SIS
A help instance

G s Ll Uit T s i e e

@Help/show help 1:10penHelpWindow 1:1

N Ll T DL LT E

e s iy D 4 L)

@Help/show help 1:10penHeipindow 1:1GetHelpWindow 1:1

LS LA SO ASLAS IS I A AP I A I 7
Application

Query Window Wed, May 20, 1992 5.26 PM

@ZHelp/show help 1:10penHelpWindow 1:1SetText 1:1

LILLS L1 SLLS LTSS IS SIS SIS

@2Kelp/show help 1:10penHelpWindow 1:1Set select list 1:1

s Ll s 2 e I 2 A ks

’handie ci.ck
2 2 7 22

@Help/help click 1:1handle click 1:3

N sl e e & Lk L O D

P Ll A e dda e L2

Query Wincow Wed, May 20, 1992 5.26 PM

@ZhHelp/help click 1:1handle click 2:3

R e T P U L i ik d

§1

@::::auzl E ChangeHelpMessage ij‘

| ShowText
(R 7R 2 2 2

§1. (select join diff union project groupcnt egjoin groupAlisatisfy groupNsatisty groupavg groupmax groupmin intersect DISPLAY SDISPLAY)

@2Help/help click 1:thandle click 3:3

L L s LR Pl 2 d s s 4D

§1. * can not be changed!
§2. The description of *

@2Help/help click 1:1handle click 1:3CetText 1:1

Quary Window Waed, May 20, 1992 5:26 PM

@2Heip/help click 1:thandle click 1:36etWindow 1:1

R L AR s kil

2L s o R AL e e LD

&ZHelp/help click 1:1handle click 1:35etText 1:1

R R R Al g s ik s i

SITLSLSSSSS IS LSS YIS SS S S LS Y S/ 5S7.]

@Help/help click 1:1handle click 2:3ChangeHelpMessage 1:1

U Ll Ll e UL L 2R

§1 You may edit the text below.(Use option-return to start new hnes.)

Query W.ndow Wed, May 20, 1992 52¢ PM

L wide

@ZHelp/help click 1:1handle click 2:3GetWindow 1:

S t————————————
UL i T D P 2 4

Qs L e L Ll

@ZHelp/help click 1:1handle click 2:3ShowText 1:1

e e s UL B R a7

EZHelp/ActivateHelp 1:1

N A A LA M LA LA AN

Application

curren Help

find-windo operators

fron

Crr
‘active?

Ul il Ll L T a2 42

Query Window Wad, May 20, 1992 5§26 PM

BIBLIOGRAPHY

Shneiderman Ben, Designing the User Interface: Strategies for Effective Human-Computer
Interaction, Addison-Wesley, 1987.

Kim, W., and Lochovsky, F. H., Object-Oriented Concepts, and Applications, Addison-
Wesley, 1989.

Wu, C. T., OOP + Visual Daraflow Diagram = Prograph, Journal of Object-Oriented
Programming, pp. 71-75, June 1991.

Meyer, B., Object-Oriented Software Consruction, Prentice Hall, 1988.

171

INITIAL DISTRIBUTION LIST

Dudley Knox Library
Code 52

Naval Postgraduate School
Monterey, CA 93943

Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Professor C. Thomas Wu
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Li, Chang-Tsun

Weapon System Department

Chung Cheng Institute of Technology
Tashi, Taoyuan, Taiwan, R.O.C. 33509

Defense Technical Information Center

Cameron Station
Alexandria, VA 22304-06145

172

